3,404 research outputs found
Centrosymmetric Matrices in the Sinc Collocation Method for Sturm-Liouville Problems
Recently, we used the Sinc collocation method with the double exponential
transformation to compute eigenvalues for singular Sturm-Liouville problems. In
this work, we show that the computation complexity of the eigenvalues of such a
differential eigenvalue problem can be considerably reduced when its operator
commutes with the parity operator. In this case, the matrices resulting from
the Sinc collocation method are centrosymmetric. Utilizing well known
properties of centrosymmetric matrices, we transform the problem of solving one
large eigensystem into solving two smaller eigensystems. We show that only
1/(N+1) of all components need to be computed and stored in order to obtain all
eigenvalues, where (2N+1) corresponds to the dimension of the eigensystem. We
applied our result to the Schr\"odinger equation with the anharmonic potential
and the numerical results section clearly illustrates the substantial gain in
efficiency and accuracy when using the proposed algorithm.Comment: 11 pages, 4 figure
Bridge numbers for virtual and welded knots
Using Gauss diagrams, one can define the virtual bridge number
and the welded bridge number invariants of virtual and welded
knots with If is a classical knot, Chernov
and Manturov showed that the bridge number as a
classical knot, and we ask whether the same thing is true for welded knots. The
welded bridge number is bounded below by the meridional rank of the knot group
, and we use this to relate this question to a conjecture of Cappell and
Shaneson. We show how to use other virtual and welded invariants to further
investigate bridge numbers. Among them are Manturov's parity and the reduced
virtual knot group , and we apply these methods to address
Questions 6.1, 6.2, 6.3 and 6.5 raised by Hirasawa, Kamada and Kamada in their
paper "Bridge presentation of virtual knots," J. Knot Theory Ramifications 20
(2011), no. 6, 881--893.Comment: 15 pages, 9 figure
Sentiment d'efficacité personnelle et réussite scolaire au collégial
Le sentiment d’efficacité personnelle (Bandura), souvent confondu avec l’estime de soi, compte assurément au nombre des ingrédients nécessaires à la réussite des étudiants. La professeure-chercheuse à l’Université du Québec à Trois-Rivières, se propose de nous familiariser avec ce concept et met en relief les sources pouvant stimuler ce sentiment. Parmi ces sources, on retrouve les expériences de maitrise (découlant des efforts et des aptitudes), les expériences vicariantes (où les pairs sont pris en exemple), la persuasion verbale (procédant de l’influence des pairs) et les états physiologiques et émotionnels (touchant la dimension socioaffective)
Le témoignage fictif d’Oscar Bougie ou réflexions sur les accidents, suspensions et maladies à la mine Lake Shore de Kirkland Lake
- …
