82 research outputs found
A Chlamydia effector recruits CEP170 to reprogram host microtubule organization
The obligate intracellular bacterial pathogen Chlamydia trachomatis deploys virulence effectors to subvert host cell functions enabling its replication within a specialized membrane-bound compartment termed an inclusion. The control of the host cytoskeleton is critical for Chlamydia uptake, inclusion biogenesis and cell exit. Here we demonstrate how a Chlamydia effector rearranges the microtubule network by initiating organization of the microtubules at the inclusion surface. We identified an inclusion-localized effector sufficient to interfere with microtubule assembly that we term inclusion protein acting on microtubules (IPAM). We established that IPAM recruits and stimulates the centrosomal protein 170kDa (CEP170) to hijack the microtubule organizing functions of the host cell. We show that CEP170 is essential for chlamydial control of host microtubule assembly, and is required for inclusion morphogenesis and bacterial infectivity. Together, we demonstrate how a pathogen effector reprograms the host microtubule network to support its intracellular development
Biochemical Diagnosis of Bile Acid Diarrhea:Prospective Comparison With the <sup>75</sup>Seleno-Taurohomocholic Acid Test
Tissue Tropism and Target Cells of NSs-Deleted Rift Valley Fever Virus in Live Immunodeficient Mice
Rift Valley fever, caused by a member of the Bunyaviridae family, has spread during recent years to most sub-Saharan African countries, in Egypt and in the Arabian peninsula. The virus can be transmitted by insect vectors or by direct contacts with infectious tissues. The analysis of virus replication and dissemination in laboratory animals has been hampered by the need to euthanize sufficient numbers of animals and to assay appropriate organs at various time points after infection to evaluate the viral replication. By following the bioluminescence and fluorescence of Rift Valley fever viruses expressing light reporters, we were able to track the real-time dissemination of the viruses in live immunodeficient mice. We showed that the first infected organs were the thymus, spleen and liver, but the liver rapidly became the main location of viral replication. Phagocytes also appeared as important targets, and their systemic depletion by use of clodronate liposomes decreased the number of viruses in the blood, delayed the viral dissemination and prolonged the survival of the infected mice
Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention
Rift Valley fever (RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the begininning of the 1930s in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa. The presence of competent vectors in countries previously free of RVF, the high viral titres in viraemic animals and the global changes in climate, travel and trade all contribute to make this virus a threat that must not be neglected as the consequences of RVF are dramatic, both for human and animal health. In this review, we present the latest advances in RVF virus research. In spite of this renewed interest, aspects of the epidemiology of RVF virus are still not fully understood and safe, effective vaccines are still not freely available for protecting humans and livestock against the dramatic consequences of this virus
Resveratrol and its synthetic derivatives exert opposite effects on mesothelial cell-dependent angiogenesis via modulating secretion of VEGF and IL-8/CXCL8
La famille des Bunyaviridae (généralités, étude de la réplication du virus de la fièvre de la vallée du Rift par génétique inverse)
CLERMONT FD-BCIU-Santé (631132104) / SudocLYON1-BU Santé (693882101) / SudocSudocFranceF
- …
