370 research outputs found

    Antibiotic and Antimalarial Quinones from Fungus-Growing Ant-Associated Pseudonocardia sp.

    Get PDF
    Three new members of the angucycline class of antibiotics, pseudonocardones A–C (1–3), along with the known antibiotics 6-deoxy-8-O-methylrabelomycin (4) and X-14881 E (5) have been isolated from the culture of a Pseudonocardia strain associated with the fungus-growing ant Apterostigma dentigerum. Compounds 4 and 5 showed antibiotic activity against Bacillus subtilis 3610 and liver-stage Plasmodium berghei, while 1–3 were inactive or only weakly active in a variety of biological assays. Compound 5 also showed moderate cytotoxicity against HepG2 cells

    Bactobolin Resistance Is Conferred by Mutations in the L2 Ribosomal Protein

    Get PDF
    Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e)

    The effect of exercise on high-level mobility in individuals with neurodegenerative disease: a systematic literature review

    Get PDF
    Objective: To investigate the effect of exercise on high-level mobility (i.e. mobility more advanced than independent level walking) in individuals with neurodegenerative disease. Data sources: A systematic literature search was conducted in Medline, CINAHL, Scopus, SportDiscus and PEDro. Study selection: Randomised controlled trials of exercise interventions for individuals with neurodegenerative disease, with an outcome measure that contained high-level mobility items were included. High-level mobility items included running, jumping, bounding, stair climbing and backward walking. Outcome measures with high-level mobility items include the High Level Mobility Assessment Tool (HiMAT); Dynamic Gait Index; Rivermead Mobility Index (RMI) or modified RMI; Functional Gait Assessment and the Functional Ambulation Category. Study appraisal: Quality was evaluated with the Cochrane Risk of Bias Tool. Results: Twenty-four studies with predominantly moderate to low risk of bias met the review criteria. High-level mobility items were included within primary outcome measures for only two studies and secondary outcome measures for 22 studies. Eight types of exercise interventions were investigated within which high-level mobility tasks were not commonly included. In the absence of outcome measures or interventions focused on high-level mobility, findings suggest some benefit from treadmill training for individuals with multiple sclerosis or Parkinson's disease. Progressive resistance training for individuals with multiple sclerosis may also be beneficial. With few studies on other neurodegenerative diseases, further inferences cannot be made. Conclusion: Future studies need to specifically target high-level mobility in the early stages of neurodegenerative disease and determine the impact of high-level mobility interventions on community participation and maintenance of an active lifestyle. Systematic review registration number PROSPERO register for systematic reviews (registration number: CRD42016050362)

    Nucleon and hadron structure changes in the nuclear medium and impact on observables

    Full text link
    We review the effect of hadron structure changes in a nuclear medium using the quark-meson coupling (QMC) model, which is based on a mean field description of non-overlapping nucleon (or baryon) bags bound by the self-consistent exchange of scalar and vector mesons. This approach leads to simple scaling relations for the changes of hadron masses in a nuclear medium. It can also be extended to describe finite nuclei, as well as the properties of hypernuclei and meson-nucleus deeply bound states. It is of great interest that the model predicts a variation of the nucleon form factors in nuclear matter. We also study the empirically observed, Bloom-Gilman (quark-hadron) duality. Other applications of the model include subthreshold kaon production in heavy ion collisions, D and D-bar meson production in antiproton-nucleus collisions, and J/Psi suppression. In particular, the modification of the D and D-bar meson properties in nuclear medium can lead to a large J/Psi absorption cross section, which explains the observed J/Psi suppression in relativistic heavy ion collisions.Comment: 143 pages, 77 figures, references added, a review article accepted in Prog. Part. Nucl. Phy

    MaineHealth Cancer Care Network Ticket Intake Process

    Get PDF
    The MaineHealth Cancer Care Network informatics team is manually submitting most reporting tickets for oncology customers. The current intake ticket process includes various communication channels to the business intelligence developers [BID] when a reporting need is identified resulting in workflow deficiencies and redundancies. As of FY23, MaineHealth has moved to a new ticket reporting system called ServiceHub which includes new customer self-service tools that have not yet been utilized

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Mixing and matching siderophore clusters: structure and biosynthesis of serratiochelins from Serratia sp. v4

    Get PDF
    Studying the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores - soluble, low molecular weight compounds - have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition for acquiring iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of 'odd' siderophores can reveal the evolutionary strategy that led to their creation. Here, we here report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholerae vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores.This work was supported by the National Institutes of Health (Grants GM82137 to R.K., and AI057159 and GM086258 to J.C.). M.R.S. acknowledges support from the NIH Pathway to Independence Award (Grant 1K99 GM098299-01). S.C. and M.J.V. acknowledge support from the Portuguese Foundation for Science and Technology (PhD Grant SFRH/BD/38298/2007 to S.C.; Project PTDC/EBB-EBI/104263/2008 to M.J.V.)

    GARDINERIN, A BIOLOGICALLY ACTIVE ACETOGENIN FROM THE SRI LANKAN GONIOTHALAMUS GARDINERI HOOK. F. AND THOMSON

    Get PDF
    Objective: The study was undertaken to isolate biologically active compounds from Goniothalamus gardineri, a plant endemic to Sri Lanka. Methods: Roots and flowers of Goniothalamus gardineri were extracted into dichloromethane and methanol. A new acetogenin, gardinerin isolated by column chromatography of the dichloromethane extract was structurally characterized using NMR and Mass spectroscopies. It was found to be mosquito larvicidal (against 2nd instar larvae of Aedes aegypti), cytotoxic (in the brine shrimp assay) and antioxidant (DPPH assay). Results: Gardinerin exhibited potent mosquitolarvicidal activity (LC50 = 0.0744±0.37 ppm.), cytotoxicity (LC50 = 1.5±0.37 ppm) and antioxidant activity (IC50 =10.02±0.01 ppm). The same extract furnished (5R)-goniothalamin. The hexane extract of the flowers of G. gardineri yielded poriferesterol and stigmast-4, 22-dien-3-one.Conclusion: The endemic plant G. gardineri has yielded an acetogenin possessing highly potent antioxidant, cytotoxic and mosquitolarvicidal activity. Â
    corecore