22 research outputs found

    Left and right ventricular longitudinal strain-volume/area relationships in elite athletes.

    Get PDF
    We propose a novel ultrasound approach with the primary aim of establishing the temporal relationship of structure and function in athletes of varying sporting demographics. 92 male athletes were studied [Group IA, (low static-low dynamic) (n = 20); Group IC, (low static-high dynamic) (n = 25); Group IIIA, (high static-low dynamic) (n = 21); Group IIIC, (high static-high dynamic) (n = 26)]. Conventional echocardiography of both the left ventricles (LV) and right ventricles (RV) was undertaken. An assessment of simultaneous longitudinal strain and LV volume/RV area was provided. Data was presented as derived strain for % end diastolic volume/area. Athletes in group IC and IIIC had larger LV end diastolic volumes compared to athletes in groups IA and IIIA (50 ± 6 and 54 ± 8 ml/(m(2))(1.5) versus 42 ± 7 and 43 ± 2 ml/(m(2))(1.5) respectively). Group IIIC also had significantly larger mean wall thickness (MWT) compared to all groups. Athletes from group IIIC required greater longitudinal strain for any given % volume which correlated to MWT (r = 0.4, p < 0.0001). Findings were similar in the RV with the exception that group IIIC athletes required lower strain for any given % area. There are physiological differences between athletes with the largest LV and RV in athletes from group IIIC. These athletes also have greater resting longitudinal contribution to volume change in the LV which, in part, is related to an increased wall thickness. A lower longitudinal contribution to area change in the RV is also apparent in these athletes

    The use of 2-D speckle tracking echocardiography in assessing adolescent athletes with left ventricular hypertrabeculation meeting the criteria for left ventricular non-compaction cardiomyopathy

    Get PDF
    BACKGROUND: Current echocardiographic criteria cannot accurately differentiate exercise induced left ventricular (LV) hypertrabeculation in athletes from LV non-compaction cardiomyopathy (LVNC). This study aims to evaluate the role of speckle tracking echocardiography (STE) in characterising LV myocardial mechanics in healthy adolescent athletes with and without LVNC echocardiographic criteria. METHODS: Adolescent athletes evaluated at three sports academies between 2014 and 2019 were considered for this observational study. Those meeting the Jenni criteria for LVNC (end-systolic non-compacted/compacted myocardium ratio > 2 in any short axis segment) were considered LVNC+ and the rest LVNC-. Peak systolic LV longitudinal strain (Sl), circumferential strain (Sc), rotation (Rot), corresponding strain rates (SRl/c) and segmental values were calculated and compared using a non-inferiority approach. RESULTS: A total of 417 participants were included, mean age 14.5 ± 1.7 years, of which 6.5% were LVNC+ (n = 27). None of the athletes showed any additional LVNC clinical criteria. All average Sl, SRl Sc, SRc and Rot values were no worse in the LVNC+ group compared to LVNC- (p values range 0.0003-0.06), apart from apical SRc (p = 0.2). All 54 segmental measurements (Sl/Sc SRl/SRc and Rot) had numerically comparable means in both LVNC+ and LVNC-, of which 69% were also statistically non-inferior. CONCLUSIONS: Among healthy adolescent athletes, 6.5% met the echocardiographic criteria for LVNC, but showed normal LV STE parameters, in contrast to available data on paediatric LVNC describing abnormal myocardial function. STE could better characterise the myocardial mechanics of athletes with LV hypertrabeculation, thus allowing the transition from structural to functional LVNC diagnosis, especially in suspected physiological remodelling

    The use of 2-D speckle tracking echocardiography in differentiating healthy adolescent athletes with right ventricular outflow tract dilation from patients with arrhythmogenic cardiomyopathy

    Get PDF
    AIMS: Echocardiographic assessment of adolescent athletes for arrhythmogenic cardiomyopathy (ACM) can be challenging owing to right ventricular (RV) exercise-related remodelling, particularly RV outflow tract (RVOT) dilation. The aim of this study is to evaluate the role of RV 2-D speckle tracking echocardiography (STE) in comparing healthy adolescent athletes with and without RVOT dilation to patients with ACM. METHODS AND RESULTS: A total of 391 adolescent athletes, mean age 14.5 ± 1.7 years, evaluated at three sports academies between 2014 and 2019 were included, and compared to previously reported ACM patients (n = 38 definite and n = 39 borderline). Peak systolic RV free wall (RVFW-Sl), global and segmental strain (Sl), and corresponding strain rates (SRl) were calculated. The participants meeting the major modified Task Force Criteria (mTFC) for RVOT dilation were defined as mTFC+ (n = 58, 14.8%), and the rest as mTFC- (n = 333, 85.2%). Mean RVFW-Sl was -27.6 ± 3.4% overall, -28.2 ± 4.1% in the mTFC+ group and - 27.5 ± 3.3% in the mTFC- group. mTFC+ athletes had normal RV-FW-Sl when compared to definite (-29% vs -19%, p < 0.001) and borderline ACM (-29% vs -21%, p < 0.001) cohorts. In addition, all mean global and regional Sl and SRl values were no worse in the mTFC+ group compared to the mTFC- (p values range < 0.0001 to 0.1, inferiority margin of 2% and 0.1 s-1 respectively). CONCLUSIONS: In athletes with RVOT dilation meeting the major mTFC, STE evaluation of the RV can demostrate normal function and differentiate physiological remodelling from pathological changes found in ACM, improving screening in grey-area cases

    Machines vs. Ensembles: Effective MAPK Signaling through Heterogeneous Sets of Protein Complexes

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author’s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively will ultimately shape how we conceptualize the function, evolution and engineering of signaling networks

    Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds

    Get PDF
    The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40–60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap

    Modeling the Dust Particle Impact Rate on the MOXIE Filter

    No full text
    Gavin Kohn, University of MarylandMichael Hecht, MIT Haystack ObservatoryJeffrey Hoffman, MIT Haystack ObservatoryJohn McClean, MIT Haystack ObservatoryICES510: Planetary and Spacecraft Dust Properties and Mitigation TechnologiesThe 50th International Conference on Environmental Systems was held virtually on 12 July 2021 through 14 July 2021.Future crewed missions to Mars are expected to use In-Situ Resource Utilization (ISRU) to provide fuel, oxidizer, and other useful products. The Mars Oxygen ISRU Experiment (MOXIE), a payload on the NASA Perseverance Mars rover, will electrolyze atmospheric carbon dioxide to produce oxygen and carbon monoxide. Dust in the martian atmosphere will collect on MOXIE s High Efficiency Particulate Air (HEPA) filter, increasing the pressure drop across the filter. Experimental results at the University of Aarhus Mars Simulation Laboratory wind tunnel suggested, however, that only 10-30% of the airborne dust (by mass) ends up in the filter. Since the collection efficiency of the filter is near perfect, this result implies that much of the dust is separated from the CO2 stream before reaching the filter. In this paper, Computational Fluid Dynamic (CFD) modeling confirms that hypothesis both qualitatively and quantitatively, showing that wind blowing across the face of the filter carries the larger particles past the filter as the CO2 flow is diverted through it. The CFD model further demonstrates a strong dependence of the fraction of particles captured on increasing wind speed. These results can inform the design of future full-scale ISRU plant filtration systems

    Effects of Subchronic Treatment With the Long-Acting Glucose-Dependent Insulinotropic Polypeptide Receptor Agonist, N-AcGIP, on Glucose Homeostasis in Streptozotocin-Induced Diabetes

    No full text
    OBJECTIVES: N-AcGIP is a potent and dipeptidylpeptidase IV-resistant analogue of glucose-dependent insulinotropic polypeptide with significantly improved antidiabetic actions in type 2 diabetes. The present study investigated the effects of subchronic treatment with N-AcGIP on glucose homeostasis in a type 1 model, namely, streptozotocin (STZ)-induced diabetic mice. METHODS: Swiss TO mice given a single intraperitoneal injection of STZ (150 mg/kg body weight) received once-daily injection of N-AcGIP (25 nmol/kg body weight) or saline for 20 days and effects on metabolic parameters and islet architecture assessed. RESULTS: Daily injection of N-AcGIP for 20 days did not significantly alter the characteristic STZ-induced changes of pancreatic insulin content, body weight, food intake, glucose, and glycated hemoglobin levels. Glucose tolerance and insulin sensitivity were also unchanged by N-AcGIP treatment. Circulating insulin was undetectable, and the number of intact islets and insulin expression was greatly reduced in both groups. Some proliferative activity was identified by 5-bromo-2-deoxyuridine staining in the pancreas, but this and expression of glucagon and somatostatin were similar in the 2 groups. CONCLUSIONS: These data indicate that subchronic treatment with the long-acting glucose-dependent insulinotropic polypeptide receptor agonist, N-AcGIP, does not have beneficial effects in insulin-deficient STZ-diabetic mice. This supports the primary antidiabetic action of this analogue in type 2 diabetes as stimulation of beta-cell function and insulin secretion.sch_die35pub4492pub

    Chronic Adaptation of Atrial Structure and Function in Elite Male Athletes

    No full text
     Aims = The aim of this study was to establish the degree of structural and functional adaptations in the left (LA) and right atria (RA) in elite male athletes engaged in ‘high dynamic : high static’ (HDHS) and ‘low dynamic : high static’ (LDHS) sporting disciplines compared with sedentary controls. Methods and results = Eighteen male, elite HDHS athletes (13 boxers and 7 triathletes), 18 male, elite LDHS athletes (8 weightlifters and 10 Akido), and 20 male, age-matched sedentary controls were assessed using conventional 2D and myocardial speckle tracking (MST) echocardiography. Absolute LA and RA volumes [end systole (VOLes), pre A (VOLpreA), and end diastole (VOLed)] as well as the functional indices of reservoir (RESvol), conduit (CONvol), and booster volumes (BOOvol) were defined. MST allowed the assessment of atrial strain (ε) during the reservoir (RESε), conduit (CONε), and booster (BOOε) phases of the cardiac cycle. Both LA and RA sizes were significantly larger in HDHS compared with LDHS and controls (P 1 in all groups due to a comparatively larger RA volume (RAVOLes : LAVOLes 1.05 ± 0.26, 1.12 ± 0.55, and 1.04 ± 0.28 for HDHS, LDHS, and controls, respectively, P > 0.05). There was no significant between group differences for any ε parameter. Conclusion = Bi-atrial hypertrophy is demonstrated in HDHS athletes and not in LDHS athletes, suggesting that the dynamic component to training is the primary driver for both LA and RA adaptation. Although functional data derived from volume shifts suggest augmented function in HDHS athletes, MST imaging demonstrated no difference in intrinsic atrial ε in any of the groups. </p
    corecore