255 research outputs found
Pressure-induced structural, electronic, and magnetic effects in BiFeO3
We present a first-principles study of multiferroic BiFeO3 at high pressures.
Our work reveals the main structural (change in Bi's coordination and loss of
ferroelectricity), electronic (spin crossover and metallization), and magnetic
(loss of order) effects favored by compression and how they are connected. Our
results are consistent with the striking manifold transition observed
experimentally by Gavriliuk et al. [Phys. Rev. B 77, 155112 (2008)] and provide
an explanation for it.Comment: 4 pages with 4 figures embedded. More information at
http://www.icmab.es/dmmis/leem/jorg
Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures
The electronic spin state of Fe^(2+) in ferropericlase, (Mg_(0.75)Fe_(0.25))O, transitions from a high-spin (spin unpaired) to low-spin (spin paired) state within the Earth’s mid-lower mantle region. To better understand the local electronic environment of high-spin Fe^(2+) ions in ferropericlase near the transition, we obtained synchrotron Mössbauer spectra (SMS) of (Mg_(0.75),Fe_(0.25))O in externally heated and laser-heated diamond anvil cells at relevant high pressures and temperatures. Results show that the quadrupole splitting (QS) of the dominant high-spin Fe^(2+) site decreases with increasing temperature at static high pressure. The QS values at constant pressure are fitted to a temperature-dependent Boltzmann distribution model, which permits estimation of the crystal-field splitting energy (Δ_3) between the d_(xy_ and d_(xz) or d_(zy) orbitals of the t_(2g) states in a distorted octahedral Fe^(2+) site. The derived Δ_3 increases from approximately 36 meV at 1 GPa to 95 meV at 40 GPa, revealing that both high pressure and high temperature have significant effects on the 3d electronic shells of Fe^(2+) in ferropericlase. The SMS spectra collected from the laser-heated diamond cells within the time window of 146 ns also indicate that QS significantly decreases at very high temperatures. A larger splitting of the energy levels at high temperatures and pressures should broaden the spin crossover in ferropericlase because the degeneracy of energy levels is partially lifted. Our results provide information on the hyperfine parameters and crystal-field splitting energy of high-spin Fe^(2+) in ferropericlase at high pressures and temperatures, relevant to the electronic structure of iron in oxides in the deep lower mantle
Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping
We report high-pressure low-temperature Raman studies of the Verwey
transition in pure and Al-doped magnetite (Fe_3O_4). The low temperature phase
of magnetite displays a number of additional Raman modes that serve as
transition markers. These transition markers allow one to investigate the
effect of hydrostatic pressure on the Verwey transition temperature. Al-doped
magnetite Fe_2.8Al_0.2O_4 (TV=116.5K) displays a nearly linear decrease of the
transition temperature with an increase of pressure yielding dP/dT_V = -0.096
GPa/K. In contrast pure magnetite displays a significantly steeper slope of the
PT equilibrium line with dP/dT_V = -0.18 GPa/K. The slope of the PT equilibrium
lines is related to the changes of the molar entropy and molar volume at the
transition. We compare our spectroscopic data with that obtained from the
ambient pressure specific heat measurements and find a good agreement in the
optimally doped magnetite. Our data indicates that Al doping leads to a smaller
entropy change and larger volume expansion at the transition. Our data displays
the trends that are consistent with the mean field model of the transition that
assumes charge ordering in magnetite.Comment: 17 pages, 3 figure
Pressure dependence of the Curie temperature in Ni2MnSn Heusler alloy: A first-principles study
The pressure dependence of electronic structure, exchange interactions and
Curie temperature in ferromagnetic Heusler alloy Ni2MnSn has been studied
theoretically within the framework of the density-functional theory. The
calculation of the exchange parameters is based on the frozen--magnon approach.
The Curie temperature, Tc, is calculated within the mean-field approximation by
solving the matrix equation for a multi-sublattice system. In agrement with
experiment the Curie temperature increased from 362K at ambient pressure to 396
at 12 GPa. Extending the variation of the lattice parameter beyond the range
studied experimentally we obtained non-monotonous pressure dependence of the
Curie temperature and metamagnetic transition. We relate the theoretical
dependence of Tc on the lattice constant to the corresponding dependence
predicted by the empirical interaction curve. The Mn-Ni atomic interchange
observed experimentally is simulated to study its influence on the Curie
temperature.Comment: 8 pages, 8 figure
Role of the conduction electrons in mediating exchange interactions in Heusler alloys
Because of large spatial separation of the Mn atoms in Heusler alloys the Mn
3d states belonging to different atoms do not overlap considerably. Therefore
an indirect exchange interaction between Mn atoms should play a crucial role in
the ferromagnetism of the systems. To study the nature of the ferromagnetism of
various Mn-based semi- and full-Heusler alloys we perform a systematic
first-principles calculation of the exchange interactions in these materials.
The calculation of the exchange parameters is based on the frozen-magnon
approach. The calculations show that the magnetism of the Mn-based Heusler
alloys depends strongly on the number of conduction electrons, their spin
polarization and the position of the unoccupied Mn 3d states with respect to
the Fermi level. Various magnetic phases are obtained depending on the
combination of these characteristics. The Anderson's s-d model is used to
perform a qualitative analysis of the obtained results. The conditions leading
to diverse magnetic behavior are identified. If the spin polarization of the
conduction electrons at the Fermi energy is large and the unoccupied Mn 3d
states lie well above the Fermi level, an RKKY-type ferromagnetic interaction
is dominating. On the other hand, the contribution of the antiferromagnetic
superexchange becomes important if unoccupied Mn 3d states lie close to the
Fermi energy. The resulting magnetic behavior depends on the competition of
these two exchange mechanisms. The calculational results are in good
correlation with the conclusions made on the basis of the Anderson s-d model
which provides useful framework for the analysis of the results of
first-principles calculations and helps to formulate the conditions for high
Curie temperature.Comment: 16 pages, 9 figures, 2 table
Magnetoelectric Effect and Spontaneous Polarization in HoFe(BO) and HoNdFe(BO)
The thermodynamic, magnetic, dielectric, and magnetoelectric properties of
HoFe(BO) and HoNdFe(BO) are
investigated. Both compounds show a second order Ne\'{e}l transition above 30 K
and a first order spin reorientation transition below 10 K.
HoFe(BO) develops a spontaneous electrical polarization below the
Ne\'{e}l temperature (T) which is diminished in external magnetic fields.
No magnetoelectric effect could be observed in HoFe(BO). In
contrast, the solid solution HoNdFe(BO) exhibits
both, a spontaneous polarization below T and a magnetoelectric effect at
higher fields that extends to high temperatures. The superposition of
spontaneous polarization, induced by the internal magnetic field in the ordered
state, and the magnetoelectric polarizations due to the external field results
in a complex behavior of the total polarization measured as a function of
temperature and field.Comment: 12 pages, 15 figure
- …
