101 research outputs found

    Spatial and temporal variations in minibasin geometry and evolution in salt tectonic provinces: Lower Congo Basin, offshore Angola

    Get PDF
    In passive margin salt basins, the distinct kinematic domains of thin‐skinned extension, translation and contraction exert important controls on minibasin evolution. However, the relationship between various salt minibasin geometries and kinematic domain evolution is not clear. In this study, we use a semi‐regional 3D seismic reflection dataset from the Lower Congo Basin, offshore Angola, to investigate the evolution of a network of minibasins and intervening salt walls during thin‐skinned, gravity‐driven salt flow. Widespread thin‐skinned extension occurred during the Cenomanian to Coniacian, accommodated by numerous distributed normal faults that are typically 5–10 km long and spaced 1–4 km across strike within the supra‐salt cover. Subsequently, during the Santonian–Paleocene, multiple, 10–25 km long, 5–7 km wide depocentres progressively grew and linked along strike to form elongate minibasins separated by salt walls of comparable lengths. Simultaneous with the development of the minibasins, thin‐skinned contractional deformation occurred in the southwestern downslope part of the study area, forming folds and thrusts that are up to 20 km long and have a wavelength of 2–4 km. The elongate minibasins evolved into turtle structures during the Eocene to Oligocene. From the Miocene onwards, contraction of the supra‐salt cover caused squeezing and uplift of the salt walls, further confining the minibasin depocentres. We find kinematic domains of extension, translation and contraction control the minibasin initiation and subsequent evolution. However, we also observe variations in minibasin geometries associated with along‐strike growth and linkage of depocentres. Neighbouring minibasins may have different subsidence rates and maturity leading to marked variations in their geometry. Additionally, migration of the contractional domain upslope and multiple phases of thin‐skinned salt tectonics further complicates the spatial variations in minibasin geometry and evolution. This study suggests that minibasin growth is more variable and complex than existing domain‐controlled models would suggest.publishedVersio

    High-resolution record reveals climate-driven environmental and sedimentary changes in an active rift

    Get PDF
    Young rifts are shaped by combined tectonic and surface processes and climate, yet few records exist to evaluate the interplay of these processes over an extended period of early rift-basin development. Here, we present the longest and highest resolution record of sediment flux and paleoenvironmental changes when a young rift connects to the global oceans. New results from International Ocean Discovery Program (IODP) Expedition 381 in the Corinth Rift show 10s–100s of kyr cyclic variations in basin paleoenvironment as eustatic sea level fluctuated with respect to sills bounding this semi-isolated basin, and reveal substantial corresponding changes in the volume and character of sediment delivered into the rift. During interglacials, when the basin was marine, sedimentation rates were lower (excepting the Holocene), and bioturbation and organic carbon concentration higher. During glacials, the basin was isolated from the ocean, and sedimentation rates were higher (~2–7 times those in interglacials). We infer that reduced vegetation cover during glacials drove higher sediment flux from the rift flanks. These orbital-timescale changes in rate and type of basin infill will likely influence early rift sedimentary and faulting processes, potentially including syn-rift stratigraphy, sediment burial rates, and organic carbon flux and preservation on deep continental margins worldwide

    High-resolution record revealsclimate-driven environmental andsedimentary changes in an active rift

    Get PDF
    Young rifts are shaped by combined tectonic and surface processes and climate, yet few records exist to evaluate the interplay of these processes over an extended period of early rift-basin development. Here, we present the longest and highest resolution record of sediment flux and paleoenvironmental changes when a young rift connects to the global oceans. New results from International Ocean Discovery Program (IODP) Expedition 381 in the Corinth Rift show 10s–100s of kyr cyclic variations in basin paleoenvironment as eustatic sea level fluctuated with respect to sills bounding this semi-isolated basin, and reveal substantial corresponding changes in the volume and character of sediment delivered into the rift. During interglacials, when the basin was marine, sedimentation rates were lower (excepting the Holocene), and bioturbation and organic carbon concentration higher. During glacials, the basin was isolated from the ocean, and sedimentation rates were higher (~2–7 times those in interglacials). We infer that reduced vegetation cover during glacials drove higher sediment flux from the rift flanks. These orbital-timescale changes in rate and type of basin infill will likely influence early rift sedimentary and faulting processes, potentially including syn-rift stratigraphy, sediment burial rates, and organic carbon flux and preservation on deep continental margins worldwide.publishedVersio

    The role of discharge variability in the formation and preservation of alluvial sediment bodies

    Get PDF
    Extant, planform-based facies models for alluvial deposits are not fully fit for purpose, because they over-emphasise plan form whereas there is little in the alluvial rock record that is distinctive of any particular planform, and because the planform of individual rivers vary in both time and space. Accordingly, existing facies models have limited predictive capability. In this paper, we explore the role of inter-annual peak discharge variability as a possible control on the character of the preserved alluvial record. Data from a suite of modern rivers, for which long-term gauging records are available, and for which there are published descriptions of subsurface sedimentary architecture, are analysed. The selected rivers are categorized according to their variance in peak discharge or the coefficient of variation (CVQp = standard deviation of the annual peak flood discharge over the mean annual peak flood discharge). This parameter ranges over the rivers studied between 0.18 and 1.22, allowing classification of rivers as having very low ( 0.90) annual peak discharge variance. Deposits of rivers with very low and low peak discharge variability are dominated by cross-bedding on various scales and preserve macroform bedding structure, allowing the interpretation of bar construction processes. Rivers with moderate values preserve mostly cross-bedding, but records of macroform processes are in places muted and considerably modified by reworking. Rivers with high and very high values of annual peak discharge variability show a wide range of bedding structures commonly including critical and supercritical flow structures, abundant in situ trees and transported large, woody debris, and their deposits contain pedogenically modified mud partings and generally lack macroform structure. Such a facies assemblage is distinctively different from the conventional fluvial style recorded in published facies models but is widely developed both in modern and ancient alluvial deposits. This high-peak-variance style is also distinctive of rivers that are undergoing contraction in discharge over time because of the gradual annexation of the channel belt by the establishment of woody vegetation. We propose that discharge variability, both inter-annual peak variation and “flashiness” may be a more reliable basis for classifying the alluvial rock record than planform, and we provide some examples of three classes of alluvial sediment bodies (representing low, intermediate, and high/very high discharge variability) from the rock record that illustrate this point

    Modelling syntectonic sedimentation: combining a discrete element model of tectonic. Deformation and process-based sedimentary Model in 3D.

    Get PDF
    This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments

    A LIDAR Study of Structural Style and Stratigraphic Response in the Nukhul Half Graben, Suez Rift, Egypt

    No full text

    Spatial and temporal variations in minibasin geometry and evolution in salt tectonic provinces: Lower Congo Basin, offshore Angola

    No full text
    In passive margin salt basins, the distinct kinematic domains of thin‐skinned extension, translation and contraction exert important controls on minibasin evolution. However, the relationship between various salt minibasin geometries and kinematic domain evolution is not clear. In this study, we use a semi‐regional 3D seismic reflection dataset from the Lower Congo Basin, offshore Angola, to investigate the evolution of a network of minibasins and intervening salt walls during thin‐skinned, gravity‐driven salt flow. Widespread thin‐skinned extension occurred during the Cenomanian to Coniacian, accommodated by numerous distributed normal faults that are typically 5–10 km long and spaced 1–4 km across strike within the supra‐salt cover. Subsequently, during the Santonian–Paleocene, multiple, 10–25 km long, 5–7 km wide depocentres progressively grew and linked along strike to form elongate minibasins separated by salt walls of comparable lengths. Simultaneous with the development of the minibasins, thin‐skinned contractional deformation occurred in the southwestern downslope part of the study area, forming folds and thrusts that are up to 20 km long and have a wavelength of 2–4 km. The elongate minibasins evolved into turtle structures during the Eocene to Oligocene. From the Miocene onwards, contraction of the supra‐salt cover caused squeezing and uplift of the salt walls, further confining the minibasin depocentres. We find kinematic domains of extension, translation and contraction control the minibasin initiation and subsequent evolution. However, we also observe variations in minibasin geometries associated with along‐strike growth and linkage of depocentres. Neighbouring minibasins may have different subsidence rates and maturity leading to marked variations in their geometry. Additionally, migration of the contractional domain upslope and multiple phases of thin‐skinned salt tectonics further complicates the spatial variations in minibasin geometry and evolution. This study suggests that minibasin growth is more variable and complex than existing domain‐controlled models would suggest

    Structural geology and 4D evolution of a half-graben: new digital outcrop modelling techniques applied to the Nukhul half-graben, Suez rift, Egypt

    No full text
    Abstract not availablePaul Wilson, David Hodgetts, Franklin Rarity, Rob L. Gawthorpe, Ian R. Shar
    corecore