7,003 research outputs found
Life cycle energy and carbon analysis of domestic combined heat and power generators
Micro Combined Heat and Power (micro-CHP) generators combine the benefits of the high-efficiency cogeneration technology and microgeneration and is being promoted as a means of lowering greenhouse gas emissions by decentralizing the power network. Life Cycle Assessment of energy systems is becoming a part of decision making in the energy industry, helping manufacturers promote their low carbon devices, and consumers choose the most environmentally friendly options. This report summarizes a preliminary life-cycle energy and carbon analysis of a wall-hung gas-powered domestic micro-CHP device that is commercially available across Europe. Combining a very efficient condensing boiler with a Stirling engine, the device can deliver enough heat to cover the needs of a typical household (up to 24kW) while generating power (up to 1kW) that can be used locally or sold to the grid. Assuming an annual heat production of 20 MWh, the study has calculated the total embodied energy and carbon emissions over a 15 years operational lifetime at 1606 GJ and 90 tonnes of CO2 respectively. Assuming that such a micro CHP device replaces the most efficient gas-powered condensing boiler for domestic heat production, and the power generated substitutes electricity from the grid, the potential energy and carbon savings are around 5000 MJ/year and 530 kg CO2/year respectively. This implies a payback period of the embodied energy and carbon at 1.32 - 2.32 and 0.75 - 1.35 years respectively. Apart from the embodied energy and carbon and the respective savings, additional key outcomes of the study are the evaluation of the energy intensive phases of the device’s life cycle and the exploration of potential improvements
Structure in Galaxy Distribution. III. Fourier Transforming the Universe
We demonstrate the effectiveness of a relatively straightforward analysis of
the complex 3D Fourier transform of galaxy coordinates derived from redshift
surveys. Numerical demonstrations of this approach are carried out on a
volume-limited sample of the Sloan Digital Sky Survey redshift survey. The
direct unbinned transform yields a complex 3D data cube quite similar to that
from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In
both cases deconvolution of the sampling window function yields estimates of
the true transform. Simple power spectrum estimates from these transforms are
roughly consistent with those using more elaborate methods. However we
concentrate on the less often studied Fourier phase spectrum, a simple and
general framework for characterizing non-Gaussianity, more easily interpretable
than the tangled, incomplete multi-point methods conventionally used. No
significant signature of non-Gaussianity has been found in the relatively small
data set analyzed, but we identify some threads of modern large scale inference
methodology that will presumably yield detections in new wider and deeper
surveys.Comment: 34 pages, 14 figures, Paper III in the series; second major revision.
NB some pdf viewers may show spurious patterns in Fig. 6-1
Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory
A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment
The radial evolution of the solar wind, 1-10 AU
The interplanetary plasma and magnetic field observations from 1 to 10 AU are reviewed. Over this distance no clear reduction in average speed is seen. The range of wind speeds becomes smaller though high speed streams are still observed. The density, temperature and magnetic field profiles become dominated by the large values seen in the co-rotating interaction regions. The temperature falls more slowly than would be expected from a simple, adiabatic model. Co-rotating shocks appear beyond approximately 3 AU in Voyager data as opposed to beyond approximately 1.5 AU in the Pioneer data. Reverse shocks appear later than forward shocks; reverse shocks do not begin to appear until approximately 4 AU; reverse shocks appear to decay more rapidly than forward shocks. No clear effect due to interaction with the interstellar medium was seen in this radial range
Viewpoints: A high-performance high-dimensional exploratory data analysis tool
Scientific data sets continue to increase in both size and complexity. In the
past, dedicated graphics systems at supercomputing centers were required to
visualize large data sets, but as the price of commodity graphics hardware has
dropped and its capability has increased, it is now possible, in principle, to
view large complex data sets on a single workstation. To do this in practice,
an investigator will need software that is written to take advantage of the
relevant graphics hardware. The Viewpoints visualization package described
herein is an example of such software. Viewpoints is an interactive tool for
exploratory visual analysis of large, high-dimensional (multivariate) data. It
leverages the capabilities of modern graphics boards (GPUs) to run on a single
workstation or laptop. Viewpoints is minimalist: it attempts to do a small set
of useful things very well (or at least very quickly) in comparison with
similar packages today. Its basic feature set includes linked scatter plots
with brushing, dynamic histograms, normalization and outlier detection/removal.
Viewpoints was originally designed for astrophysicists, but it has since been
used in a variety of fields that range from astronomy, quantum chemistry, fluid
dynamics, machine learning, bioinformatics, and finance to information
technology server log mining. In this article, we describe the Viewpoints
package and show examples of its usage.Comment: 18 pages, 3 figures, PASP in press, this version corresponds more
closely to that to be publishe
Impact and collisional processes in the solar system
As impact cratered terrains have been successively recognized on certain planets and planetary satellites, it has become clear that impact processes are important to the understanding of the accretion and evolution of all solid planets. The noble gases in the normalized atmospheric inventories of the planets and the normalized gas content of meteorites are grossly similar, but demonstrate differences from each other which are not understood. In order to study shock devolatilization of the candidate carrier phases which are principally thought to be carbonaceous or hydrocarbons in planetesimals, experiments were conducted on noble gase implantation in various carbons: carbon black, activated charcoal, graphite, and carbon glass. These were candidate starting materials for impact devolatilization experiments. Initial experiments were conducted on vitreous amorphous carbon samples which were synthesized under vapor saturated conditions using argon as the pressurizing medium. An amino acid and surface analysis by laser ionization analyses were performed on three samples of shocked Murchison meteorite. A first study was completed in which a series of shock loading experiments on a porous limestone and on a non-porous gabbro in one and three dimensions were performed. Also a series of recovery experiments were conducted in which shocked molten basalt a 1700 C is encapsulated in molybdenum containers and shock recovered from up to 6 GPa pressures
Towards a Macroscopic Modelling of the Complexity in Traffic Flow
We present a macroscopic traffic flow model that extends existing fluid-like
models by an additional term containing the second derivative of the safe
velocity. Two qualitatively different shapes of the safe velocity are explored:
a conventional Fermi-type function and a function exhibiting a plateau at
intermediate densities. The suggested model shows an extremely rich dynamical
behaviour and shows many features found in real-world traffic data.Comment: submitted to Phys. Rev.
Exploiting spatial abstraction in predictive analytics of vehicle traffic
By applying visual analytics techniques to vehicle traffic data, we found a way to visualize and study the relationships between the traffic intensity and movement speed on links of a spatially abstracted transportation network. We observed that the traffic intensities and speeds in an abstracted network are interrelated in the same way as they are in a detailed street network at the level of street segments. We developed interactive visual interfaces that support representing these interdependencies by mathematical models. To test the possibility of utilizing them for performing traffic simulations on the basis of abstracted transportation networks, we devised a prototypical simulation algorithm employing these dependency models. The algorithm is embedded in an interactive visual environment for defining traffic scenarios, running simulations, and exploring their results. Our research demonstrates a principal possibility of performing traffic simulations on the basis of spatially abstracted transportation networks using dependency models derived from real traffic data. This possibility needs to be comprehensively investigated and tested in collaboration with transportation domain specialists
- …
