5,497 research outputs found
Towards a Macroscopic Modelling of the Complexity in Traffic Flow
We present a macroscopic traffic flow model that extends existing fluid-like
models by an additional term containing the second derivative of the safe
velocity. Two qualitatively different shapes of the safe velocity are explored:
a conventional Fermi-type function and a function exhibiting a plateau at
intermediate densities. The suggested model shows an extremely rich dynamical
behaviour and shows many features found in real-world traffic data.Comment: submitted to Phys. Rev.
Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model
We derive macroscopic traffic equations from specific gas-kinetic equations,
dropping some of the assumptions and approximations made in previous papers.
The resulting partial differential equations for the vehicle density and
average velocity contain a non-local interaction term which is very favorable
for a fast and robust numerical integration, so that several thousand freeway
kilometers can be simulated in real-time. The model parameters can be easily
calibrated by means of empirical data. They are directly related to the
quantities characterizing individual driver-vehicle behavior, and their optimal
values have the expected order of magnitude. Therefore, they allow to
investigate the influences of varying street and weather conditions or freeway
control measures. Simulation results for realistic model parameters are in good
agreement with the diverse non-linear dynamical phenomena observed in freeway
traffic.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://www.theo2.physik.uni-stuttgart.de/treiber.htm
Traffic Network Optimum Principle - Minimum Probability of Congestion Occurrence
We introduce an optimum principle for a vehicular traffic network with road
bottlenecks. This network breakdown minimization (BM) principle states that the
network optimum is reached, when link flow rates are assigned in the network in
such a way that the probability for spontaneous occurrence of traffic breakdown
at one of the network bottlenecks during a given observation time reaches the
minimum possible value. Based on numerical simulations with a stochastic
three-phase traffic flow model, we show that in comparison to the well-known
Wardrop's principles the application of the BM principle permits considerably
greater network inflow rates at which no traffic breakdown occurs and,
therefore, free flow remains in the whole network.Comment: 22 pages, 6 figure
Macroscopic Dynamics of Multi-Lane Traffic
We present a macroscopic model of mixed multi-lane freeway traffic that can
be easily calibrated to empirical traffic data, as is shown for Dutch highway
data. The model is derived from a gas-kinetic level of description, including
effects of vehicular space requirements and velocity correlations between
successive vehicles. We also give a derivation of the lane-changing rates. The
resulting dynamic velocity equations contain non-local and anisotropic
interaction terms which allow a robust and efficient numerical simulation of
multi-lane traffic. As demonstrated by various examples, this facilitates the
investigation of synchronization patterns among lanes and effects of on-ramps,
off-ramps, lane closures, or accidents.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
Multi-Bunch Solutions of Differential-Difference Equation for Traffic Flow
Newell-Whitham type car-following model with hyperbolic tangent optimal
velocity function in a one-lane circuit has a finite set of the exact solutions
for steady traveling wave, which expressed by elliptic theta function. Each
solution of the set describes a density wave with definite number of
car-bunches in the circuit. By the numerical simulation, we observe a
transition process from a uniform flow to the one-bunch analytic solution,
which seems to be an attractor of the system. In the process, the system shows
a series of cascade transitions visiting the configurations closely similar to
the higher multi-bunch solutions in the set.Comment: revtex, 7 pages, 5 figure
Congested Traffic States in Empirical Observations and Microscopic Simulations
We present data from several German freeways showing different kinds of
congested traffic forming near road inhomogeneities, specifically lane
closings, intersections, or uphill gradients. The states are localized or
extended, homogeneous or oscillating. Combined states are observed as well,
like the coexistence of moving localized clusters and clusters pinned at road
inhomogeneities, or regions of oscillating congested traffic upstream of nearly
homogeneous congested traffic. The experimental findings are consistent with a
recently proposed theoretical phase diagram for traffic near on-ramps [D.
Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)].
We simulate these situations with a novel continuous microscopic single-lane
model, the ``intelligent driver model'' (IDM), using the empirical boundary
conditions. All observations, including the coexistence of states, are
qualitatively reproduced by describing inhomogeneities with local variations of
one model parameter.
We show that the results of the microscopic model can be understood by
formulating the theoretical phase diagram for bottlenecks in a more general
way. In particular, a local drop of the road capacity induced by parameter
variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee
are incorporated; full bibliographic info added. For related work see
http://www.mtreiber.de/ and http://www.helbing.org
Modeling and Simulation of Multi-Lane Traffic Flow
A most important aspect in the field of traffic modeling is the simulation of
bottleneck situations. For their realistic description a macroscopic multi-lane
model for uni-directional freeways including acceleration, deceleration,
velocity fluctuations, overtaking and lane-changing maneuvers is systematically
deduced from a gas-kinetic (Boltzmann-like) approach. The resulting equations
contain corrections with respect to previous models. For efficient computer
simulations, a reduced model delineating the coarse-grained temporal behavior
is derived and applied to bottleneck situations.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
Coupled-Map Modeling of One-Dimensional Traffic Flow
We propose a new model of one-dimensional traffic flow using a coupled map
lattice. In the model, each vehicle is assigned a map and changes its velocity
according to it. A single map is designed so as to represent the motion of a
vehicle properly, and the maps are coupled to each other through the headway
distance. By simulating the model, we obtain a plot of the flow against the
concentration similar to the observed data in real traffic flows. Realistic
traffic jam regions are observed in space-time trajectories.Comment: 5 postscript figures available upon reques
Generalized Force Model of Traffic Dynamics
Floating car data of car-following behavior in cities were compared to
existing microsimulation models, after their parameters had been calibrated to
the experimental data. With these parameter values, additional simulations have
been carried out, e.g. of a moving car which approaches a stopped car. It
turned out that, in order to manage such kinds of situations without producing
accidents, improved traffic models are needed. Good results have been obtained
with the proposed generalized force model.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
An empirical test for cellular automaton models of traffic flow
Based on a detailed microscopic test scenario motivated by recent empirical
studies of single-vehicle data, several cellular automaton models for traffic
flow are compared. We find three levels of agreement with the empirical data:
1) models that do not reproduce even qualitatively the most important empirical
observations,
2) models that are on a macroscopic level in reasonable agreement with the
empirics, and 3) models that reproduce the empirical data on a microscopic
level as well.
Our results are not only relevant for applications, but also shed new light
on the relevant interactions in traffic flow.Comment: 28 pages, 36 figures, accepted for publication in PR
- …
