22,064 research outputs found
Subdiffusive Source Sensing by a Regional Detection Method.
Motivated by the fact that the danger may increase if the source of pollution problem remains unknown, in this paper, we study the source sensing problem for subdiffusion processes governed by time fractional diffusion systems based on a limited number of sensor measurements. For this, we first give some preliminary notions such as source, detection and regional spy sensors, etc. Secondly, we investigate the characterizations of regional strategic sensors and regional spy sensors. A regional detection approach on how to solve the source sensing problem of the considered system is then presented by using the Hilbert uniqueness method (HUM). This is to identify the unknown source only in a subregion of the whole domain, which is easier to be implemented and could save a lot of energy resources. Numerical examples are finally included to test our results
Iso-energy-efficiency: An approach to power-constrained parallel computation
Future large scale high performance supercomputer systems require high energy efficiency to achieve exaflops computational power and beyond. Despite the need to understand energy efficiency in high-performance systems, there are few techniques to evaluate energy efficiency at scale. In this paper, we propose a system-level iso-energy-efficiency model to analyze, evaluate and predict energy-performance of data intensive parallel applications with various execution patterns running on large scale power-aware clusters. Our analytical model can help users explore the effects of machine and application dependent characteristics on system energy efficiency and isolate efficient ways to scale system parameters (e.g. processor count, CPU power/frequency, workload size and network bandwidth) to balance energy use and performance. We derive our iso-energy-efficiency model and apply it to the NAS Parallel Benchmarks on two power-aware clusters. Our results indicate that the model accurately predicts total system energy consumption within 5% error on average for parallel applications with various execution and communication patterns. We demonstrate effective use of the model for various application contexts and in scalability decision-making
Multi-scale structure, pasting and digestibility of adlay (Coixlachryma-jobi L.) seed starch
peer-reviewedThe hierarchical structure, pasting and digestibility of adlay seed starch (ASS) were investigated compared with maize starch (MS) and potato starch (PS). ASS exhibited round or polyglonal morphology with apparent pores/channels on the surface. It had a lower amylose content, a looser and more heterogeneous C-type crystalline structure, a higher crystallinity, and a thinner crystalline lamellae. Accordingly, ASS showed a higher slowly digestible starch content combined with less resistant starch fractions, and a decreased pasting temperature, a weakened tendency to retrogradation and an increased pasting stability compared with those of MS and PS. The ASS structure-functionality relationship indicated that the amylose content, double helical orders, crystalline lamellar structure, and surface pinholes should be responsible for ASS specific functionalities including pasting behaviors and in vitro digestibility. ASS showed potential applications in health-promoting foods which required low rearrangement during storage and sustainable energy-providing starch fractions
- …
