842 research outputs found
A validated high-performance liquid chromatography method for the determination of rifampicin and desacetyl rifampicin in plasma and urine
Objective: To standardize a high-performance liquid chromatography (HPLC) method for the determination
of rifampicin (RMP) and its major metabolite desacetyl rifampicin (DRMP) in plasma and
urine.
Material and Methods: A simple, specific and sensitive HPLC method was developed for the determination
of RMP and DRMP in plasma and urine. Separation in both was achieved by reversephase
chromatography on a C18 column with a mobile phase composition of 0.05 M phosphate
buffer: acetonitrile (55:45 v/v) at 254 nm.
Results: The retention times of DRMP, RMP and Rifapentine (RPN), the internal standard were 2.9,
4.8 and 10.5 min respectively. The assay was linear from 0.25 to 15.0 μg ml-1 for plasma and 2.5 to
80.0 μg ml-1 for urine. Both intra-day and inter-day accuracy and precision data showed good
reproducibility.
Conclusion: The HPLC method described is sensitive, selective and linear for the wide range of
concentrations for RMP and DRMP in plasma and urine. Thus, the method developed is well suited
for the pharmacokinetic studies
Magnetic properties and crystal field in Pr2Zr2O7
In this work, we revisit the crystal field acting on the non-Kramers Pr3+ ion (4f2) in the quantum spin ice candidate Pr2Zr2O7 using both a standard calculation restricted to the ground spin-orbit multiplet and intermediate coupling states in the full basis of the f 2 configuration. Analysis of the thermal variation of the polycrystal magnetic susceptibility and of the local susceptibilities χ⊥ and χ// determined by means of polarized neutron diffraction experiments reveals that the effective antiferromagnetic exchange is strongly depleted at low temperature with respect to its high-temperature value.We then discuss the influence of crystal field imperfections arising from residual strains, which are especially important for a non-Kramers ion. We find that they are an essential ingredient to account for the very low temperature M(H) magnetization curves, showing that the saturation is not achieved even at 8 T. Furthermore, as possible candidates to qualitatively understand the Curie-like behavior observed below 0.5 K, we discuss the influence of the magnetic hyperfine interaction
Account of bivalve fishery resources of Southern Tamil Nadu
Account of bivalve fishery resources of Southern Tamil Nad
The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children
BACKGROUND: Resistant starch (RS) decreases intestinal inflammation in some settings. We tested the hypothesis that gut inflammation will be reduced with dietary supplementation with RS in rural Malawian children. Eighteen stunted 3–5-year-old children were supplemented with 8.5 g/day of RS type 2 for 4 weeks. The fecal samples were analyzed for the microbiota, the microbiome, short chain fatty acids, metabolome, and proteins indicative of inflammation before and after the intervention. Subjects served as their own controls. RESULTS: The consumption of RS changed the composition of the microbiota; at the phylum level Actinobacteria increased, while Firmicutes decreased. Among the most prevalent genera, Lactobacillus was increased and Roseburia, Blautia, and Lachnospiracea incertae sedis were decreased. The Shannon H index at the genus level decreased from 2.02 on the habitual diet and 1.76 after the introduction of RS (P < 0.01). Fecal acetate concentration decreased, and fecal propionate concentration increased after RS administration (−5.2 and 2.0 μmol/g, respectively). Fecal calprotectin increased from 29 ± 69 to 89 ± 49 μg/g (P = 0.003) after RS was given. The lipopolysaccharide biosynthesis pathway was upregulated. CONCLUSIONS: Our findings do not support the hypothesis that RS reduces gut inflammation in rural Malawian children. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40168-015-0102-9) contains supplementary material, which is available to authorized users
Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys
International audienceIn this study, the microstructure and the mechanical properties of two new biocompatible superelastic alloys, Ti-24Nb-0.5O and Ti-24Nb-0.5N (at.%), were investigated. Special attention was focused on the role of O and N addition on α″ formation, supereleastic recovery and mechanical strength by comparison with the Ti-24Nb and Ti-26Nb (at.%) alloy compositions taken as references. Microstructures were characterized by optical microscopy, X-ray diffraction and transmission electron microscopy before and after deformation. The mechanical properties and the superelastic behavior were evaluated by conventional and cyclic tensile tests. High tensile strength, low Young's modulus, rather high superelastic recovery and excellent ductility were observed for both superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N alloys. Deformation twinning was shown to accommodate the plastic deformation in these alloys and only the {332}〈113〉 twinning system was observed to be activated by electron backscattered diffraction analyses
Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2
Computational personality recognition in social media
A variety of approaches have been recently proposed to automatically infer users' personality from their user generated content in social media. Approaches differ in terms of the machine learning algorithms and the feature sets used, type of utilized footprint, and the social media environment used to collect the data. In this paper, we perform a comparative analysis of state-of-the-art computational personality recognition methods on a varied set of social media ground truth data from Facebook, Twitter and YouTube. We answer three questions: (1) Should personality prediction be treated as a multi-label prediction task (i.e., all personality traits of a given user are predicted at once), or should each trait be identified separately? (2) Which predictive features work well across different on-line environments? (3) What is the decay in accuracy when porting models trained in one social media environment to another
Health professional networks as a vector for improving healthcare quality and safety: a systematic review
Background: While there is a considerable corpus of theoretical and empirical literature on networks within and outside of the health sector, multiple research questions are yet to be answered. Objective: To conduct a systematic review of studies of professionals' network structures, identifying factors associated with network effectiveness and sustainability, particularly in relation to quality of care and patient safety. Methods: The authors searched MEDLINE, CINAHL, EMBASE, Web of Science and Business Source Premier from January 1995 to December 2009. Results: A majority of the 26 unique studies identified used social network analysis to examine structural relationships in networks: structural relationships within and between networks, health professionals and their social context, health collaboratives and partnerships, and knowledge sharing networks. Key aspects of networks explored were administrative and clinical exchanges, network performance, integration, stability and influences on the quality of healthcare. More recent studies show that cohesive and collaborative health professional networks can facilitate the coordination of care and contribute to improving quality and safety of care. Structural network vulnerabilities include cliques, professional and gender homophily, and over-reliance on central agencies or individuals. Conclusions: Effective professional networks employ natural structural network features (eg, bridges, brokers, density, centrality, degrees of separation, social capital, trust) in producing collaboratively oriented healthcare. This requires efficient transmission of information and social and professional interaction within and across networks. For those using networks to improve care, recurring success factors are understanding your network's characteristics, attending to its functioning and investing time in facilitating its improvement. Despite this, there is no guarantee that time spent on networks will necessarily improve patient care
Canonical wnt signaling activity in early stages of chick lung development
Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good model for branching studies since it recapitulates early mammalian pulmonary development.Rute S. Moura was supported by a grant of ON.2 SR&TD Integrated Program (N-01-01-0124-01-07), ref: UMINHO/BPD/31/2013. The funders had no role in study design, data collection and analysis
X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
- …
