4,595 research outputs found
Excitation Spectrum and Correlation Functions of the Z_3-Chiral Potts Quantum Spin Chain
We study the excitation spectrum and the correlation functions of the Z_3-
chiral Potts model in the massive high-temperature phase using perturbation
expansions and numerical diagonalization. We are mainly interested in results
for general chiral angles but we consider also the superintegrable case. For
the parameter values considered, we find that the band structure of the low-
lying part of the excitation spectrum has the form expected from a
quasiparticle picture with two fundamental particles. Studying the N-dependence
of the spectrum, we confirm the stability of the second fundamental particle in
a limited range of the momentum, even when its energy becomes so high that it
lies very high up among the multiparticle scattering states. This is not a
phenomenon restricted to the superintegrable line. Calculating a
non-translationally invariant correlation function, we give evidence that it is
oscillating. Within our numerical accuracy we find a relation between the
oscillation length and the dip position of the momentum dispersion of the
lightest particle which seems to be quite independent of the chiral angles.Comment: 19 pages + 6 PostScript figures (LaTeX); BONN-TH-94-2
Low-Temperature Expansions and Correlation Functions of the Z_3-Chiral Potts Model
Using perturbative methods we derive new results for the spectrum and
correlation functions of the general Z_3-chiral Potts quantum chain in the
massive low-temperature phase. Explicit calculations of the ground state energy
and the first excitations in the zero momentum sector give excellent
approximations and confirm the general statement that the spectrum in the
low-temperature phase of general Z_n-spin quantum chains is identical to one in
the high-temperature phase where the role of charge and boundary conditions are
interchanged. Using a perturbative expansion of the ground state for the Z_3
model we are able to gain some insight in correlation functions. We argue that
they might be oscillating and give estimates for the oscillation length as well
as the correlation length.Comment: 17 pages (Plain TeX), BONN-HE-93-1
Enhancing the Digital Backchannel Backstage on the Basis of a Formative User Study
Contemporary higher education with its large audiences suffers from passivity of students. Enhancing the classroom with a digital backchannel can contribute to establishing and fostering active participation of and collaboration among students in the lecture. Therefore, we conceived the digital backchannel Backstage specifically tailored for the use in large classes. At an early phase of development we tested its core functionalities in a small-scale user study. The aim of the study was to gain first impressions of its adoption, and also to form a basis for further steps in the conception of Backstage. Regarding adoption we particularly focused on how Backstage influences the participants' questioning behavior, a salient aspect in learning. We observed that during the study much more questions were uttered on Backstage than being asked without backchannel support. Regarding the further development of Backstage we capitalized on the participants' usability feedback. The key of the refinement is the integration of presentation slides in Backstage, which leads to an interesting reconsideration of the user interactions of Backstage
Onsager's algebra and partially orthogonal polynomials
The energy eigenvalues of the superintegrable chiral Potts model are
determined by the zeros of special polynomials which define finite
representations of Onsager's algebra. The polynomials determining the
low-sector eigenvalues have been given by Baxter in 1988. In the Z_3-case they
satisfy 4-term recursion relations and so cannot form orthogonal sequences.
However, we show that they are closely related to Jacobi polynomials and
satisfy a special "partial orthogonality" with respect to a Jacobi weight
function.Comment: 8 pages, no figure
Providing guidance on Backstage, a novel digital backchannel for large class teaching
Many articles in the last couple of years argued that it is necessary to promote the active participation of students in lectures with large audiences. One approach to make students actively participate in a lecture is to use a digital backchannel, i.e. a computer-mediated communication platform that allows students to exchange ideas and opinions, without disrupting the lecturer’s discourse. Though, a digital backchannel, in order to be most helpful for learning, have to address the need for guidance of the users interacting. The article presents Backstage, a digital backchannel for large class lectures, and shows how it provides guidance for its users, i.e. the students but also the lecturer. Structural guidance is provided by aligning the usually incoherent backchannel discourse with the presentation slides that are integrated in the backchannel’s user interface. The alignment is thereby asserted by carefully designed backchannel workflows. The article also discusses the guidance of a student’s substantial involvement in both the frontchannel and the backchannel by means of scripts. Through the interactions of guided individuals a social guidance may emerge, leading to a collectively regulated backchannel
Identities in the Superintegrable Chiral Potts Model
We present proofs for a number of identities that are needed to study the
superintegrable chiral Potts model in the sector.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 11 pages,
uses eufb10 and eurm10 fonts. Typeset twice! vs2: Two equations added. vs3:
Introduction adde
- …
