258 research outputs found
Microsurgery Interactive Video Learning Modules: Validierung eines videobasierten Lehrmittels für die Mikrochirurgie
From Chatter to Matter: Addressing Critical Steps of Emotion Recognition Learning in Task-oriented Dialogue
Emotion recognition in conversations (ERC) is a crucial task for building
human-like conversational agents. While substantial efforts have been devoted
to ERC for chit-chat dialogues, the task-oriented counterpart is largely left
unattended. Directly applying chit-chat ERC models to task-oriented dialogues
(ToDs) results in suboptimal performance as these models overlook key features
such as the correlation between emotions and task completion in ToDs. In this
paper, we propose a framework that turns a chit-chat ERC model into a
task-oriented one, addressing three critical aspects: data, features and
objective. First, we devise two ways of augmenting rare emotions to improve ERC
performance. Second, we use dialogue states as auxiliary features to
incorporate key information from the goal of the user. Lastly, we leverage a
multi-aspect emotion definition in ToDs to devise a multi-task learning
objective and a novel emotion-distance weighted loss function. Our framework
yields significant improvements for a range of chit-chat ERC models on EmoWOZ,
a large-scale dataset for user emotion in ToDs. We further investigate the
generalisability of the best resulting model to predict user satisfaction in
different ToD datasets. A comparison with supervised baselines shows a strong
zero-shot capability, highlighting the potential usage of our framework in
wider scenarios.Comment: Accepted by SIGDIAL 202
EmoUS: Simulating User Emotions in Task-Oriented Dialogues
Existing user simulators (USs) for task-oriented dialogue systems only model
user behaviour on semantic and natural language levels without considering the
user persona and emotions. Optimising dialogue systems with generic user
policies, which cannot model diverse user behaviour driven by different
emotional states, may result in a high drop-off rate when deployed in the real
world. Thus, we present EmoUS, a user simulator that learns to simulate user
emotions alongside user behaviour. EmoUS generates user emotions, semantic
actions, and natural language responses based on the user goal, the dialogue
history, and the user persona. By analysing what kind of system behaviour
elicits what kind of user emotions, we show that EmoUS can be used as a probe
to evaluate a variety of dialogue systems and in particular their effect on the
user's emotional state. Developing such methods is important in the age of
large language model chat-bots and rising ethical concerns.Comment: accepted by SIGIR202
CAMELL: Confidence-based Acquisition Model for Efficient Self-supervised Active Learning with Label Validation
Supervised neural approaches are hindered by their dependence on large,
meticulously annotated datasets, a requirement that is particularly cumbersome
for sequential tasks. The quality of annotations tends to deteriorate with the
transition from expert-based to crowd-sourced labelling. To address these
challenges, we present \textbf{CAMELL} (Confidence-based Acquisition Model for
Efficient self-supervised active Learning with Label validation), a pool-based
active learning framework tailored for sequential multi-output problems. CAMELL
possesses three core features: (1) it requires expert annotators to label only
a fraction of a chosen sequence, (2) it facilitates self-supervision for the
remainder of the sequence, and (3) it employs a label validation mechanism to
prevent erroneous labels from contaminating the dataset and harming model
performance. We evaluate CAMELL on sequential tasks, with a special emphasis on
dialogue belief tracking, a task plagued by the constraints of limited and
noisy datasets. Our experiments demonstrate that CAMELL outperforms the
baselines in terms of efficiency. Furthermore, the data corrections suggested
by our method contribute to an overall improvement in the quality of the
resulting datasets
Infusing Emotions into Task-oriented Dialogue Systems: Understanding, Management, and Generation
Emotions are indispensable in human communication, but are often overlooked
in task-oriented dialogue (ToD) modelling, where the task success is the
primary focus. While existing works have explored user emotions or similar
concepts in some ToD tasks, none has so far included emotion modelling into a
fully-fledged ToD system nor conducted interaction with human or simulated
users. In this work, we incorporate emotion into the complete ToD processing
loop, involving understanding, management, and generation. To this end, we
extend the EmoWOZ dataset (Feng et al., 2022) with system affective behaviour
labels. Through interactive experimentation involving both simulated and human
users, we demonstrate that our proposed framework significantly enhances the
user's emotional experience as well as the task success.Comment: Accepted by SIGDIAL 202
ChatGPT for Zero-shot Dialogue State Tracking: A Solution or an Opportunity?
Recent research on dialogue state tracking (DST) focuses on methods that
allow few- and zero-shot transfer to new domains or schemas. However,
performance gains heavily depend on aggressive data augmentation and
fine-tuning of ever larger language model based architectures. In contrast,
general purpose language models, trained on large amounts of diverse data, hold
the promise of solving any kind of task without task-specific training. We
present preliminary experimental results on the ChatGPT research preview,
showing that ChatGPT achieves state-of-the-art performance in zero-shot DST.
Despite our findings, we argue that properties inherent to general purpose
models limit their ability to replace specialized systems. We further theorize
that the in-context learning capabilities of such models will likely become
powerful tools to support the development of dedicated and dynamic dialogue
state trackers.Comment: 13 pages, 3 figures, accepted at ACL 202
Transcription Factor Binding Site Polymorphism in the Motilin Gene Associated with Left-Sided Displacement of the Abomasum in German Holstein Cattle
Left-sided displacement of the abomasum (LDA) is a common disease in many dairy cattle breeds. A genome-wide screen for QTL for LDA in German Holstein (GH) cows indicated motilin (MLN) as a candidate gene on bovine chromosome 23. Genomic DNA sequence analysis of MLN revealed a total of 32 polymorphisms. All informative polymorphisms used for association analyses in a random sample of 1,136 GH cows confirmed MLN as a candidate for LDA. A single nucleotide polymorphism (FN298674:g.90T>C) located within the first non-coding exon of bovine MLN affects a NKX2-5 transcription factor binding site and showed significant associations (ORallele = 0.64; −log10Pallele = 6.8, −log10Pgenotype = 7.0) with LDA. An expression study gave evidence of a significantly decreased MLN expression in cows carrying the mutant allele (C). In individuals heterozygous or homozygous for the mutation, MLN expression was decreased by 89% relative to the wildtype. FN298674:g.90T>C may therefore play a role in bovine LDA via the motility of the abomasum. This MLN SNP appears useful to reduce the incidence of LDA in German Holstein cattle and provides a first step towards a deeper understanding of the genetics of LDA
Ketone bodies in blood of dairy cows: Prevalence and monitoring of subclinical ketosis
- …
