198 research outputs found

    Using a Non-Image-Based Medium-Throughput Assay for Screening Compounds Targeting N-myristoylation in Intracellular Leishmania Amastigotes

    Get PDF
    We have refined a medium-throughput assay to screen hit compounds for activity against N-myristoylation in intracellular amastigotes of Leishmania donovani. Using clinically-relevant stages of wild type parasites and an Alamar blue-based detection method, parasite survival following drug treatment of infected macrophages is monitored after macrophage lysis and transformation of freed amastigotes into replicative extracellular promastigotes. The latter transformation step is essential to amplify the signal for determination of parasite burden, a factor dependent on equivalent proliferation rate between samples. Validation of the assay has been achieved using the anti-leishmanial gold standard drugs, amphotericin B and miltefosine, with EC50 values correlating well with published values. This assay has been used, in parallel with enzyme activity data and direct assay on isolated extracellular amastigotes, to test lead-like and hit-like inhibitors of Leishmania Nmyristoyl transferase (NMT). These were derived both from validated in vivo inhibitors of Trypanosoma brucei NMT and a recent high-throughput screen against L. donovani NMT. Despite being a potent inhibitor of L. donovani NMT, the activity of the lead T. brucei NMT inhibitor (DDD85646) against L. donovani amastigotes is relatively poor. Encouragingly, analogues of DDD85646 show improved translation of enzyme to cellular activity. In testing the high-throughput L. donovani hits, we observed macrophage cytotoxicity with compounds from two of the four NMT-selective series identified, while all four series displayed low enzyme to cellular translation, also seen here with the T. brucei NMT inhibitors. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors

    Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction

    Get PDF
    Background: Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth. However, the possible connection between these pathways and how they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not well understood. Results: Here, we report that Gβγ, an important component of the GPCR pathway, is critical for NGF-induced neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gβγ with MTs and stimulated MT assembly. While Gβγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and induced neurite damage, the Gβγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement of Gβγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation of γ subunits are required for the Gβγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these inhibitors disrupted Gβγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further support of a role of Gβγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gβγ in PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gβγ exhibited a pattern of association with MTs similar to that observed in NGF-differentiated cells. Conclusions: Altogether, our results demonstrate that βγ subunit of heterotrimeric G proteins play a critical role in neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0132-4) contains supplementary material, which is available to authorized users

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Standardized patient outcomes trial (SPOT) in neurology

    Get PDF
    Background: The neurologic examination is a challenging component of the physical examination for medical students. In response, primarily based on expert consensus, medical schools have supplemented their curricula with standardized patient (SP) sessions that are focused on the neurologic examination. Hypothesis-driven quantitative data are needed to justify the further use of this resource-intensive educational modality, specifically regarding whether using SPs to teach the neurological examination effects a long-term benefit on the application of neurological examination skills. Methods: This study is a cross-sectional analysis of prospectively collected data from medical students at Weill Cornell Medical College. The control group (n=129) received the standard curriculum. The intervention group (n=58) received the standard curriculum and an additional SP session focused on the neurologic examination during the second year of medical school. Student performance on the neurologic examination was assessed in the control and intervention groups via an OSCE administered during the fourth year of medical school. A Neurologic Physical Exam (NPE) score of 0.0 to 6.0 was calculated for each student based on a neurologic examination checklist completed by the SPs during the OSCE. Composite NPE scores in the control and intervention groups were compared with the unpaired t-test. Results: In the fourth year OSCE, composite NPE scores in the intervention group (3.5±1.1) were statistically significantly greater than those in the control group (2.2±1.1) (p<0.0001). Conclusions: SP sessions are an effective tool for teaching the neurologic examination. We determined that a single, structured SP session conducted as an adjunct to our traditional lectures and small groups is associated with a statistically significant improvement in student performance measured 2 years after the session

    Association between painful temporomandibular disorders, sleep bruxism and tinnitus

    Full text link
    The present cross-sectional study was designed to investigate the association between sleep bruxism (SB), tinnitus and temporomandibular disorders (TMD). The sample consisted of 261 women (mean age of 37.0 years). The Research Diagnostic Criteria for Temporomandibular Disorders were used to classify TMD and self-reported tinnitus. SB was diagnosed by clinical criteria proposed by the American Academy of Sleep Medicine. The results showed an association between painful TMD and tinnitus (OR = 7.3; 95%CI = 3.50-15.39; p < 0.001). With regard to SB, the association was of lower magnitude (OR = 1.9; 95%CI = 1.16-3.26; p < 0.0163). When the sample was stratified by the presence of SB and painful TMD, only SB showed no association with tinnitus. The presence of painful TMD without SB was significantly associated with tinnitus (OR = 6.7; 95%CI = 2.64-17.22; p < 0.0001). The concomitant presence of painful TMD and SB was associated with a higher degree of tinnitus severity (OR = 7.0; 95%CI = 3.00-15.89; p < 0.0001). It may be concluded that there is an association between SB, painful TMD and self-reported tinnitus; however, no relationship of a causal nature could be established.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista Araraquara School of Dentistry Department of Dental Materials and ProsthodonticsUniversidade de São Paulo Hospital das Clínicas Department of NeurologyUniv Estadual Paulista Araraquara School of Dentistry Department of Dental Materials and Prosthodontic

    A microfluidic device with fluorimetric detection for intracellular components analysis

    Get PDF
    An integrated microfluidic system that coupled lysis of two cell lines: L929 fibroblasts and A549 epithelial cells, with fluorescence-based enzyme assay was developed to determine β-glucocerebrosidase activity. The microdevice fabricated in poly(dimethylsiloxane) consists of three main parts: a chemical cell lysis zone based on the sheath flow geometry, a micromeander and an optical fibers detection zone. Unlike many methods described in literature that are designed to analyse intracellular components, the presented system enables to perform enzyme assays just after cell lysis process. It reduces the effect of proteases released in lysis process on determined enzymes. Glucocerebrosidase activity, the diagnostic marker for Gaucher’s disease, is the most commonly measured in leukocytes and fibroblasts using 4-methylumbelliferyl-β-D-glucopyranoside as synthetic β-glucoside. The enzyme cleavage releases the fluorescent product, i.e. 4-methylumbelliferone, and its fluorescence is measured as a function of time. The method of enzyme activity determination described in this paper was adapted for flow measurements in the microdevice. The curve of the enzymatic reaction advancement was prepared for three reaction times obtained from application of different flow rates of solutions introduced to the microsystem. Afterwards, determined β-glucocerebrosidase activity was recalculated with regard to 105 cells present in samples used for the tests. The obtained results were compared with a cuvette-based measurements. The lysosomal β-glucosidase activities determined in the microsystem were in good correlation with the values determined during macro-scale measurements

    A Comparative Chemogenomics Strategy to Predict Potential Drug Targets in the Metazoan Pathogen, Schistosoma mansoni

    Get PDF
    Schistosomiasis is a prevalent and chronic helmintic disease in tropical regions. Treatment and control relies on chemotherapy with just one drug, praziquantel and this reliance is of concern should clinically relevant drug resistance emerge and spread. Therefore, to identify potential target proteins for new avenues of drug discovery we have taken a comparative chemogenomics approach utilizing the putative proteome of Schistosoma mansoni compared to the proteomes of two model organisms, the nematode, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster. Using the genome comparison software Genlight, two separate in silico workflows were implemented to derive a set of parasite proteins for which gene disruption of the orthologs in both the model organisms yielded deleterious phenotypes (e.g., lethal, impairment of motility), i.e., are essential genes/proteins. Of the 67 and 68 sequences generated for each workflow, 63 were identical in both sets, leading to a final set of 72 parasite proteins. All but one of these were expressed in the relevant developmental stages of the parasite infecting humans. Subsequent in depth manual curation of the combined workflow output revealed 57 candidate proteins. Scrutiny of these for 'druggable' protein homologs in the literature identified 35 S. mansoni sequences, 18 of which were homologous to proteins with 3D structures including co-crystallized ligands that will allow further structure-based drug design studies. The comparative chemogenomics strategy presented generates a tractable set of S. mansoni proteins for experimental validation as drug targets against this insidious human pathogen

    Diagnosing Hunter syndrome in pediatric practice: practical considerations and common pitfalls

    Get PDF
    Mucopolysaccharidosis II (MPS II), or Hunter syndrome, is an X-linked lysosomal storage disorder caused by a deficiency in the enzyme iduronate-2-sulfatase. Affected patients suffer progressive damage to multiple organ systems and early mortality. Two thirds of patients also manifest cognitive impairment and developmental delays. MPS II can be extremely difficult to diagnose before irreversible organ and tissue damage has occurred because of an insidious onset and the overlap in signs and symptoms with common childhood complaints. This is particularly true of patients without cognitive impairment (attenuated phenotype). Although not curative, early treatment with enzyme replacement therapy before irreversible organ damage has occurred may result in the greatest clinical benefit. Here, the signs, symptoms, and surgical history that should trigger suspicion of MPS II are described, and the diagnostic process is reviewed with a focus on practical considerations and the avoidance of common diagnostic pitfalls. Once a diagnosis is made, multidisciplinary management with an extended team of pediatric specialists is essential and should involve the pediatrician or family practice physician as facilitator and medical home for the patient and family. Conclusion: Because routine newborn screening is not yet available for MPS II, the involvement and awareness of pediatricians, family practice physicians, and pediatric specialists is critical for early identification, diagnosis, and referral in order to help optimize patient outcomes
    corecore