545 research outputs found

    Quantum phase transitions in the Triangular-lattice Bilayer Heisenberg Model

    Full text link
    We study the triangular lattice bilayer Heisenberg model with antiferromagnetic interplane coupling JJ_\perp and nearest neighbour intraplane coupling J=λJJ= \lambda J_\perp, which can be ferro- or antiferromagnetic, by expansions in λ\lambda. For negative λ\lambda a phase transition is found to an ordered phase at a critical λc=0.2636±0.0001\lambda_c=-0.2636 \pm 0.0001 which is in the 3D classical Heisenberg universality class. For λ>0\lambda>0, we find a transition at a rather large λc1.2\lambda_c\approx 1.2. The universality class of the transition is consistent with that of Kawamura's 3D antiferromagnetic stacked triangular lattice. The spectral weight for the triplet excitations, at the ordering wavevector, remains finite at the transition, suggesting that a phase with free spinons does not exist in this model.Comment: revtex, 4 pages, 3 figure

    Phase diagram for a class of spin-half Heisenberg models interpolating between the square-lattice, the triangular-lattice and the linear chain limits

    Full text link
    We study the spin-half Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square-lattice at one end, a set of decoupled spin-chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations and varying dimensionality. There is a large region of the usual 2-sublattice Ne\'el phase, a 3-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wavevector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical.Comment: RevTeX, 15 figure

    Stability and BPS branes

    Get PDF
    We define the concept of Pi-stability, a generalization of mu-stability of vector bundles, and argue that it characterizes N=1 supersymmetric brane configurations and BPS states in very general string theory compactifications with N=2 supersymmetry in four dimensions.Comment: harvmac, 18 p

    Dynamics with Low-Level Fractionality

    Full text link
    The notion of fractional dynamics is related to equations of motion with one or a few terms with derivatives of a fractional order. This type of equation appears in the description of chaotic dynamics, wave propagation in fractal media, and field theory. For the fractional linear oscillator the physical meaning of the derivative of order α<2\alpha<2 is dissipation. In systems with many spacially coupled elements (oscillators) the fractional derivative, along the space coordinate, corresponds to a long range interaction. We discuss a method of constructing a solution using an expansion in ϵ=nα\epsilon=n-\alpha with small ϵ\epsilon and positive integer nn. The method is applied to the fractional linear and nonlinear oscillators and to fractional Ginzburg-Landau or parabolic equations.Comment: LaTeX, 24 pages, to be published in Physica

    Galilei invariant theories. I. Constructions of indecomposable finite-dimensional representations of the homogeneous Galilei group: directly and via contractions

    Full text link
    All indecomposable finite-dimensional representations of the homogeneous Galilei group which when restricted to the rotation subgroup are decomposed to spin 0, 1/2 and 1 representations are constructed and classified. These representations are also obtained via contractions of the corresponding representations of the Lorentz group. Finally the obtained representations are used to derive a general Pauli anomalous interaction term and Darwin and spin-orbit couplings of a Galilean particle interacting with an external electric field.Comment: 23 pages, 2 table

    The Intrinsic Fundamental Group of a Linear Category

    Get PDF
    We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.Comment: Final version, to appear in Algebras and Representation Theor

    Low-temperature dynamics of the Curie-Weiss Model: Periodic orbits, multiple histories, and loss of Gibbsianness

    Get PDF
    We consider the Curie-Weiss model at a given initial temperature in vanishing external field evolving under a Glauber spin-flip dynamics corresponding to a possibly different temperature. We study the limiting conditional probabilities and their continuity properties and discuss their set of points of discontinuity (bad points). We provide a complete analysis of the transition between Gibbsian and non-Gibbsian behavior as a function of time, extending earlier work for the case of independent spin-flip dynamics. For initial temperature bigger than one we prove that the time-evolved measure stays Gibbs forever, for any (possibly low) temperature of the dynamics. In the regime of heating to low-temperatures from even lower temperatures, when the initial temperature is smaller than the temperature of the dynamics, and smaller than 1, we prove that the time-evolved measure is Gibbs initially and becomes non-Gibbs after a sharp transition time. We find this regime is further divided into a region where only symmetric bad configurations exist, and a region where this symmetry is broken. In the regime of further cooling from low-temperatures there is always symmetry-breaking in the set of bad configurations. These bad configurations are created by a new mechanism which is related to the occurrence of periodic orbits for the vector field which describes the dynamics of Euler-Lagrange equations for the path large deviation functional for the order parameter. To our knowledge this is the first example of the rigorous study of non-Gibbsian phenomena related to cooling, albeit in a mean-field setup.Comment: 31 pages, 24 figure

    Faster Geometric Algorithms via Dynamic Determinant Computation

    Full text link
    The computation of determinants or their signs is the core procedure in many important geometric algorithms, such as convex hull, volume and point location. As the dimension of the computation space grows, a higher percentage of the total computation time is consumed by these computations. In this paper we study the sequences of determinants that appear in geometric algorithms. The computation of a single determinant is accelerated by using the information from the previous computations in that sequence. We propose two dynamic determinant algorithms with quadratic arithmetic complexity when employed in convex hull and volume computations, and with linear arithmetic complexity when used in point location problems. We implement the proposed algorithms and perform an extensive experimental analysis. On one hand, our analysis serves as a performance study of state-of-the-art determinant algorithms and implementations. On the other hand, we demonstrate the supremacy of our methods over state-of-the-art implementations of determinant and geometric algorithms. Our experimental results include a 20 and 78 times speed-up in volume and point location computations in dimension 6 and 11 respectively.Comment: 29 pages, 8 figures, 3 table

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    Topological mirror symmetry with fluxes

    Full text link
    Motivated by SU(3) structure compactifications, we show explicitly how to construct half--flat topological mirrors to Calabi--Yau manifolds with NS fluxes. Units of flux are exchanged with torsion factors in the cohomology of the mirror; this is the topological complement of previous differential--geometric mirror rules. The construction modifies explicit SYZ fibrations for compact Calabi--Yaus. The results are of independent interest for SU(3) compactifications. For example one can exhibit explicitly which massive forms should be used for Kaluza--Klein reduction, proving previous conjectures. Formality shows that these forms carry no topological information; this is also confirmed by infrared limits and old classification theorems.Comment: 35 pages, 5 figure
    corecore