7 research outputs found
Performance Evaluation of Novel Random Biased-Genetic Algorithm (NRB-GA): A Hybrid Load Balancing Algorithm in a Cloud Computing Environment
A novel random biased-genetic algorithm (NRB-GA) load-balancing algorithm that exhibits the characteristics of both genetic algorithms and biased random algorithms is designed and developed to improve the processing time and response time metrics of the cloud computing environment. The NRB-GA is designed to discover a virtual machine with fewer loads by applying a genetic algorithm with a fitness function that is inversely proportional to the average load over a period of time for each virtual machine and with biased parent selection to maximize the fitness values of offspring. The developed NRB-GA load-balancing algorithm is evaluated by analysing its performance for various simulated scenarios in a cloud computing environment with different user bases and data center configurations. The analysis of the experimental results of NRB-GA indicates that the average response time is reduced by 27.22%, 21.15%, and 22.34%, and the processing time is reduced by 25.73%, 16.14%, and 18.82% for one, two, and three data centers, respectively. It is evident that the proposed NRB-GA algorithm for load balancing outperforms other existing algorithms significantly.</jats:p
Detection and classification of brain tumor using hybrid deep learning models
Abstract Accurately classifying brain tumor types is critical for timely diagnosis and potentially saving lives. Magnetic Resonance Imaging (MRI) is a widely used non-invasive method for obtaining high-contrast grayscale brain images, primarily for tumor diagnosis. The application of Convolutional Neural Networks (CNNs) in deep learning has revolutionized diagnostic systems, leading to significant advancements in medical imaging interpretation. In this study, we employ a transfer learning-based fine-tuning approach using EfficientNets to classify brain tumors into three categories: glioma, meningioma, and pituitary tumors. We utilize the publicly accessible CE-MRI Figshare dataset to fine-tune five pre-trained models from the EfficientNets family, ranging from EfficientNetB0 to EfficientNetB4. Our approach involves a two-step process to refine the pre-trained EfficientNet model. First, we initialize the model with weights from the ImageNet dataset. Then, we add additional layers, including top layers and a fully connected layer, to enable tumor classification. We conduct various tests to assess the robustness of our fine-tuned EfficientNets in comparison to other pre-trained models. Additionally, we analyze the impact of data augmentation on the model's test accuracy. To gain insights into the model's decision-making, we employ Grad-CAM visualization to examine the attention maps generated by the most optimal model, effectively highlighting tumor locations within brain images. Our results reveal that using EfficientNetB2 as the underlying framework yields significant performance improvements. Specifically, the overall test accuracy, precision, recall, and F1-score were found to be 99.06%, 98.73%, 99.13%, and 98.79%, respectively
Author Correction: An active learning machine technique based prediction of cardiovascular heart disease from UCI-repository database
Lung cancer diagnosis based on weighted convolutional neural network using gene data expression
Abstract Lung cancer is thought to be a genetic disease with a variety of unknown origins. Globocan2020 report tells in 2020 new cancer cases identified was 19.3 million and nearly 10.0 million died owed to cancer. GLOBOCAN envisages that the cancer cases will raised to 28.4 million in 2040. This charge is superior to the combined rates of the former generally prevalent malignancies, like breast, colorectal, and prostate cancers. For attribute selection in previous work, the information gain model was applied. Then, for lung cancer prediction, multilayer perceptron, random subspace, and sequential minimal optimization (SMO) are used. However, the total number of parameters in a multilayer perceptron can become extremely large. This is inefficient because of the duplication in such high dimensions, and SMO can become ineffective due to its calculating method and maintaining a single threshold value for prediction. To avoid these difficulties, our research presented a novel technique including Z-score normalization, levy flight cuckoo search optimization, and a weighted convolutional neural network for predicting lung cancer. This result findings show that the proposed technique is effective in precision, recall, and accuracy for the Kent Ridge Bio-Medical Dataset Repository
An active learning machine technique based prediction of cardiovascular heart disease from UCI-repository database
Abstract Heart disease is a significant global cause of mortality, and predicting it through clinical data analysis poses challenges. Machine learning (ML) has emerged as a valuable tool for diagnosing and predicting heart disease by analyzing healthcare data. Previous studies have extensively employed ML techniques in medical research for heart disease prediction. In this study, eight ML classifiers were utilized to identify crucial features that enhance the accuracy of heart disease prediction. Various combinations of features and well-known classification algorithms were employed to develop the prediction model. Neural network models, such as Naïve Bayes and Radial Basis Functions, were implemented, achieving accuracies of 94.78% and 90.78% respectively in heart disease prediction. Among the state-of-the-art methods for cardiovascular problem prediction, Learning Vector Quantization exhibited the highest accuracy rate of 98.7%. The motivation behind predicting Cardiovascular Heart Disease lies in its potential to save lives, improves health outcomes, and allocates healthcare resources efficiently. The key contributions encompass early intervention, personalized medicine, technological advancements, the impact on public health, and ongoing research, all of which collectively work toward reducing the burden of CHD on both individual patients and society as a whole
A modified generative adversarial networks with Yolov5 for automated forest health diagnosis from aerial imagery and Tabu search algorithm
Abstract Our environment has been significantly impacted by climate change. According to previous research, insect catastrophes induced by global climate change killed many trees, inevitably contributing to forest fires. The condition of the forest is an essential indicator of forest fires. Analysis of aerial images of a forest can detect deceased and living trees at an early stage. Automated forest health diagnostics are crucial for monitoring and preserving forest ecosystem health. Combining Modified Generative Adversarial Networks (MGANs) and YOLOv5 (You Only Look Once version 5) is presented in this paper as a novel method for assessing forest health using aerial images. We also employ the Tabu Search Algorithm (TSA) to enhance the process of identifying and categorizing unhealthy forest areas. The proposed model provides synthetic data to supplement the limited labeled dataset, thereby resolving the frequent issue of data scarcity in forest health diagnosis tasks. This improvement enhances the model's ability to generalize to previously unobserved data, thereby increasing the overall precision and robustness of the forest health evaluation. In addition, YOLOv5 integration enables real-time object identification, enabling the model to recognize and pinpoint numerous tree species and potential health issues with exceptional speed and accuracy. The efficient architecture of YOLOv5 enables it to be deployed on devices with limited resources, enabling forest-monitoring applications on-site. We use the TSA to enhance the identification of unhealthy forest areas. The TSA method effectively investigates the search space, ensuring the model converges to a near-optimal solution, improving disease detection precision and decreasing false positives. We evaluated our MGAN-YOLOv5 method using a large dataset of aerial images of diverse forest habitats. The experimental results demonstrated impressive performance in diagnosing forest health automatically, achieving a detection precision of 98.66%, recall of 99.99%, F1 score of 97.77%, accuracy of 99.99%, response time of 3.543 ms and computational time of 5.987 ms. Significantly, our method outperforms all the compared target detection methods showcasing a minimum improvement of 2% in mAP
