254 research outputs found

    Superconductor strip in a closed magnetic environment: exact analytic representation of the critical state

    Full text link
    An exact analytic representation of the critical state of a current-carrying type-II superconductor strip located inside a cylindrical magnetic cavity of high permeability is derived. The obtained results show that, when the cavity radius is small, penetration of magnetic flux fronts is strongly reduced as compared to the situation in an isolated strip. From our generic representation it is possible to establish current profiles in closed cavities of various other geometries too by means of conformal mapping of the basic configuration addressed.Comment: 2 pages, 1 figure; accepted in Physica C for the Proceedings of M2S-HTSC, Dresden, 200

    Strong reduction of ac losses in a superconductor strip located between superconducting ground plates

    Full text link
    The problem of calculating the ac losses in a superconductor strip with a transport current placed inside superconducting environments is studied analytically in the frame of the critical state model. Exact results obtained by the method of images for the commonly employed flat ground plates are used to derive power losses and, consequently, the nonlinear resistance depending on the ac frequency, current amplitude and the distance to the ground plates. The resistance is strongly reduced when the distance between the strip and the shields becomes small.Comment: 10 pages, 3 figure

    Magneto-optical investigations of Ag-sheathed Bi-2223 tapes with ferromagnetic shielding

    Full text link
    An increase in the critical current and suppression of AC losses in superconducting wires and tapes with soft magnetic sheath have been predicted theoretically and confirmed experimentally. In this work we present the results of magneto-optical investigations on a series of Ag-sheathed Bi-2223 tapes with Ni coating. We visualize distributions of magnetic field at increasing external field and different temperatures, demonstrating a difference between the flux propagation in the superconductor with Ni rims and a reference sample without Ni coating.Comment: 2 page

    Distribution of the sheet current in a magnetically shielded superconducting filament

    Full text link
    The distribution of the transport current in a superconducting filament aligned parallel to the flat surface of a semi-infinite bulk magnet is studied theoretically. An integral equation governing the current distribution in the Meissner state of the filament is derived and solved numerically for various filament-magnet distances and different relative permeabilities. This reveals that the current is depressed on the side of the filament adjacent to the surface of the magnet and enhanced on the averted side. Substantial current redistributions in the filament can already occur for low values of the relative permeability of the magnet, when the distance between the filament and the magnet is short, with evidence of saturation at moderately high values of this quantity, similar to the findings for magnetically shielded strips.Comment: 11 pages, 5 figures; submitted to Physica

    Magnetic detectability of a finite size paramagnet/superconductor cylindrical cloak

    Full text link
    Cloaking of static magnetic fields by a finite thickness type-II superconductor tube surrounded by a coaxial paramagnet shell is studied. On the basis of exact solutions to the London and Maxwell equations, it is shown that perfect cloaking is realizable for arbitrary geometrical parameters including the thin film case for both constituents. In contrast to previous approximate studies assuming perfect diamagnetism of the superconductor constituent, it is proven that cloaking provides simultaneously full undetectability, that is the magnetic moment of the structure completely vanishes as well as all high-order multipole moments as soon as the uniform field outside remains unaffected.Comment: 6 pages, 2 figures, to be published in Applied Physics Letter

    Hysteretic ac losses in a superconductor strip between flat magnetic shields

    Full text link
    Hysteretic ac losses in a thin, current-carrying superconductor strip located between two flat magnetic shields of infinite permeability are calculated using Bean's model of the critical state. For the shields oriented parallel to the plane of the strip, penetration of the self-induced magnetic field is enhanced, and the current dependence of the ac loss resembles that in an isolated superconductor slab, whereas for the shields oriented perpendicular to the plane of the strip, penetration of the self-induced magnetic field is impaired, and the current dependence of the ac loss is similar to that in a superconductor strip flanked by two parallel superconducting shields. Thus, hysteretic ac losses can strongly augment or, respectively, wane when the shields approach the strip.Comment: 9 pages, 5 figures, submitted to PR

    Finite-element simulations of hysteretic ac losses in a magnetically coated superconducting tubular wire subject to an oscillating transverse magnetic field

    Full text link
    Numerical simulations of hysteretic ac losses in a tubular superconductor/paramagnet heterostructure subject to an oscillating transverse magnetic field are performed within the quasistatic approach, calling upon the COMSOL finite-element software package and exploiting magnetostatic-electrostatic analogues. It is shown that one-sided magnetic shielding of a thin, type-II superconducting tube by a coaxial paramagnetic support results in a slight increase of hysteretic ac losses as compared to those for a vacuum environment, when the support is placed inside; a spectacular shielding effect with a possible reduction of hysteretic ac losses by orders of magnitude, however, ensues, depending on the magnetic permeability and the amplitude of the applied magnetic field, when the support is placed outside.Comment: 7 pages, 4 figure

    Stochastic model of dispersive multi-step polarization switching in ferroelectrics due to spatial electric field distribution

    Full text link
    A stochastic model for polarization switching in tetragonal ferroelectric ceramics is introduced, which includes sequential 90{\deg}- and parallel 180{\deg}-switching processes and accounts for the dispersion of characteristic switching times due to a nonuniform spatial distribution of the applied field. It presents merging of the recent multistep stochastic mechanism (MSM) with the earlier nucleation limited switching (NLS) and inhomogeneous field mechanism (IFM) models. The new model provides a much better description of simultaneous polarization and strain responses over a wide time window and a deeper insight into the microscopic switching mechanisms, as is exemplarily shown by comparison with measurements on lead zirconate titanate.Comment: 11 pages, 3 figure

    Magnetic cloaking by a paramagnet/superconductor cylindrical tube in the critical state

    Full text link
    Cloaking of static magnetic fields by a finite thickness type-II superconductor tube being in the full critical state and surrounded by a coaxial paramagnet shell is studied. On the basis of exact solutions to the Maxwell equations, it is shown that, additionally to previous studies assuming the Meissner state of the superconductor constituent, perfect cloaking is still realizable at fields higher than the field of full flux penetration into the superconductor and for arbitrary geometrical parameters of both constituents. It is also proven that simultaneously the structure is fully undetectable under the cloaking conditions. Differently from the case of the Meissner state the cloaking properties in the application relevant critical state are realized, however, only at a certain field magnitude.Comment: 5 pages, 4 figures; to be published in Applied Physics Letters. arXiv admin note: substantial text overlap with arXiv:1401.356

    The Bean-Livingston barrier at a superconductor/magnet interface

    Full text link
    The Bean-Livingston barrier at the interface of type-II superconductor/soft-magnet heterostructures is studied on the basis of the classical London approach. This shows a characteristic dependence on the geometry of the particular structure and its interface as well as on the relative permeability of the involved magnetic constituent. The modification of the barrier by the presence of the magnet can be significant, as demonstrated for a cylindrical superconducting filament covered with a coaxial magnetic sheath. Using typical values of the relative permeability, the critical field of first penetration of magnetic flux is predicted to be strongly enhanced, whereas the variation of the average critical current density with the external field is strongly depressed, in accord with the observations of recent experiments.Comment: RevTeX 4; revised version; accepted in Journal of Physics: Condensed Matte
    corecore