384 research outputs found

    Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere

    No full text
    It is widely accepted that Earth’s early atmosphere contained less than 0.001 per cent of the present-day atmospheric oxygen (O2) level, until the Great Oxidation Event resulted in a major rise in O2 concentration about 2.4 billion years ago1. There are multiple lines of evidence for low O2 concentrations on early Earth, but all previous observations relate to the composition of the lower atmosphere2 in the Archaean era; to date no method has been developed to sample the Archaean upper atmosphere. We have extracted fossil micrometeorites from limestone sedimentary rock that had accumulated slowly 2.7 billion years ago before being preserved in Australia’s Pilbara region. We propose that these micrometeorites formed when sand-sized particles entered Earth’s atmosphere and melted at altitudes of about 75 to 90 kilometres (given an atmospheric density similar to that of today3). Here we show that the FeNi metal in the resulting cosmic spherules was oxidized while molten, and quench-crystallized to form spheres of interlocking dendritic crystals primarily of magnetite (Fe3O4), with wüstite (FeO)+metal preserved in a few particles. Our model of atmospheric micrometeorite oxidation suggests that Archaean upper-atmosphere oxygen concentrations may have been close to those of the present-day Earth, and that the ratio of oxygen to carbon monoxide was sufficiently high to prevent noticeable inhibition of oxidation by carbon monoxide. The anomalous sulfur isotope (Δ33S) signature of pyrite (FeS2) in seafloor sediments from this period, which requires an anoxic surface environment4, implies that there may have been minimal mixing between the upper and lower atmosphere during the Archaean

    Hotfire testing of a SSME HPOTP with an annular hydrostatic bearing

    Get PDF
    A new fluid film bearing package has been tested in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP). This fluid film element functions as both the pump end bearing and the preburner pump rear wear ring seal. Most importantly, it replaces a duplex ball bearing package which has been the primary life limiting component in the turbopump. The design and predicted performance of the turbopump are reviewed. Results are presented for measured pump and bearing performance during testing on the NASA Technology Test Bed (TTB) Engine located at MSFC. The most significant results were obtained from proximity probes located in the bearing bore which revealed large subsynchronous precession at ten percent of shaft speed during engine start which subsided prior to mainstage power levels and reappeared during engine shutdown at equivalent power levels below 65% of nominal. This phenomenon has been attributed to rotating stall in the diffuser. The proximity probes also revealed the location of the bearing in the bore for different operating speeds. Pump vibration characteristics were improved as compared to pumps tested with ball bearings. After seven starts and more than 700 seconds of testing, the pump showed no signs of performance degradation

    Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals

    Get PDF
    A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, preclude equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (i.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles

    The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites

    Get PDF
    High-precision oxygen isotopic compositions of eighteen large cosmic spherules (>500 µm diameter) from the Atacama Desert, Chile, were determined using IR-laser fluorination – Isotope Ratio Mass spectrometry. The four discrete isotopic groups defined in a previous study on cosmic spherules from the Transantarctic Mountains (Suavet et al., 2010) were identified, confirming their global distribution. Approximately 50% of the studied cosmic spherules are related to carbonaceous chondrites, 38% to ordinary chondrites and 12% to unknown parent bodies. Approximately 90% of barred olivine (BO) cosmic spherules show oxygen isotopic compositions suggesting they are related to carbonaceous chondrites. Similarly, ∼90% porphyritic olivine (Po) cosmic spherules are related to ordinary chondrites and none can be unambiguously related to carbonaceous chondrites. Other textures are related to all potential parent bodies. The data suggests that the textures of cosmic spherules are mainly controlled by the nature of the precursor rather than by the atmospheric entry parameters. We propose that the Po texture may essentially be formed from a coarse-grained precursor having an ordinary chondritic mineralogy and chemistry. Coarse-grained precursors related to carbonaceous chondrites (i.e. chondrules) are likely to either survive atmospheric entry heating or form V-type cosmic spherules. Due to the limited number of submicron nucleation sites after total melting, ordinary chondrite-related coarse-grained precursors that suffer higher peak temperatures will preferentially form cryptocrystalline (Cc) textures instead of BO textures. Conversely, the BO textures would be mostly related to the fine-grained matrices of carbonaceous chondrites due to the wide range of melting temperatures of their constituent mineral phases, allowing the preservation of submicron nucleation sites. Independently of the nature of the precursors, increasing peak temperatures form glassy textures

    MiToS and King\u27s staging as clinical outcome measures in ALS: A retrospective analysis of the FORTITUDE-ALS trial

    Get PDF
    OBJECTIVE: To evaluate the Milano-Torino staging (MiToS) and King\u27s staging systems as potential outcome measures for clinical trials in amyotrophic lateral sclerosis (ALS) by assessing these outcomes in FORTITUDE-ALS. METHODS: This was a RESULTS: The full analysis set consisted of 456 patients randomized 3:1 ( CONCLUSION: This exploratory analysis showed the feasibility of MiToS and King\u27s staging as potential outcome measures in ALS. Additional studies of these staging systems are needed to further explore their utility in ALS clinical trials

    Respiratory Measures in Amyotrophic Lateral Sclerosis

    Get PDF
    Objective: Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease that causes skeletal muscle weakness, including muscles involved with respiration. Death often results from respiratory failure within 3€“5 years. Monitoring respiratory status is therefore critical to ALS management, as respiratory/pulmonary function tests (PFTs) are used to make decisions including when to initiate noninvasive ventilation. Understanding the different respiratory and PFTs as they relate to disease progression and survival may help determine which tests are most suitable. Methods: This review describes the tests used to assess respiratory muscle and pulmonary function in patients with ALS and the correlations between different respiratory measures and clinical outcomes measures. Results: The most commonly used measurement, forced vital capacity (VC), has been shown to correlate with clinical milestones including survival, but also requires good motor coordination and facial strength to form a tight seal around a mouthpiece. Other tests such as slow VC, sniff inspiratory pressure, or transdiaphragmatic pressure with magnetic stimulation are also associated with distinct advantages and disadvantages. Conclusions: Therefore, how and when to use different tests remains unclear. Understanding how each test relates to disease progression and survival may help determine which is best suited for specific clinical decisions
    corecore