291 research outputs found
Genome-wide promoter extraction and analysis in human, mouse, and rat
Large-scale and high-throughput genomics research needs reliable and comprehensive genome-wide promoter annotation resources. We have conducted a systematic investigation on how to improve mammalian promoter prediction by incorporating both transcript and conservation information. This enabled us to build a better multispecies promoter annotation pipeline and hence to create CSHLmpd (Cold Spring Harbor Laboratory Mammalian Promoter Database) for the biomedical research community, which can act as a starting reference system for more refined functional annotations
Design of next generation high throughput satellite communication system based on beam-hopping
Beam-hopping technology provides a basis for flexible allocation and efficient utilization of satellite resources,and it is considered as a key technology of the new generation of high-throughput satellite.With the goal of service-driven,efficient utilization of resources and on-demand coverage of hot spots area,from the aspects of system architecture,communication system,working mechanism,resource allocation method and beam-hopping pattern design,user access strategy,air interface protocol design and system workflow,a top-down feasibility and technical foundation was provided for the design of a new generation of high-throughput satellite communication system based on beam hopping.Finally,it meet the requirements of flexible and mobile information service for the space-earth integration network,as well as the demand of the space-based backbone network with high reliability and large capacity transmission
Observed deep energetic eddies by seamount wake
Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport
Study of spectrum sharing in integrated satellite-terrestrial system based on space-based interference cartography
To deal with the spectrum demand of new low earth orbit satellite (LEO) communication component and the aggregate interference generated by incumbent terrestrial component in future integrated satellite-terrestrial system, a novel space-borne spectrum-sensing (SS) and spectrum-database assisted spectrum-sharing scheme with interweave model for LEO cognitive system was proposed.Firstly, considering the adverse impact of the sparse distribution of LEO cognitive node (CN) on SS and interference cartography (IC), the concept of cognitive node position was put forward.Secondly, the spectrum-DB was built based on dual-threshold hybrid SS and IC with LEO cognitive system.Finally, a spectrum-sharing scheme with multi-state virtual network (MSVN) was designed, which could make the coexistence between terrestrial component and uplink of LEO component available.Simulation results indicate that the spectrum-database approach based on the proposed dual-threshold hybrid SS and IC can support the spectrum awareness of high reliability with relatively low-density LEO CN, and that the proposed cooperative access scheme based on spectrum-database and interweave model for LEO component can share spectrum with terrestrial one, but not significantly increase the end-to-end delay of LEO component
pH: A core node of interaction networks among soil organo-mineral fractions
Mineral-associated organic matter (MAOM) is the largest soil organic carbon (OC) pool with the longest turnover. MAOM is expected to have relatively little sensitivity to climate change due to mineral protection, but its persistence involves several organo-mineral fractions. The uncertainty in the response of specific organo-mineral fractions to climate change hampers the reliability of predictions of MAOM preservation in the future. Here, we applied a sequential chemical fractionation method integrated with network analysis to investigate MAOM stabilization mechanisms across five alpine ecosystems: alpine desert, alpine steppe, alpine meadow, alpine wetland, and alpine forest. Hierarchical cluster analysis revealed grouping of seven extractable OM fractions in MAOM into three OM clusters: a cluster with weak bondings consisting of water-soluble OM (WSOM) and weakly adsorbed fractions (2.1–21.3% of total OC); a cluster with metal-bound complexes comprising Ca-OM complexes and Fe/Al-OM complexes (3.8–12.2% of total OC); and a cluster with strong bonding composed of Al oxyhydroxides, carbonates and Fe oxyhydroxides (12.2–33.5% of total OC). The relative percentages of OM from soils of the five ecosystems in the three clusters exhibited distinct pH dependence patterns. With the increase in pH, the cluster with weak bondings decreased, and that with strong bondings increased, while the one with metal-bound complexes showed a maximum at weakly acidic pH. Organo-mineral fractions and metal cations in MAOM constructed a complex network with pH as the central node. Results suggest that precipitation does not only alter vegetation type and microbial biomass but also regulate soil pH, which is balanced by specific metal cations, thus resulting in particular pH preference of specific OM clusters. These findings demonstrate that soil pH plays a central role in unveiling MAOM dynamics and can serve as a good predictor of soil organo-mineral fractions across alpine ecosystems
Surface warming-induced global acceleration of upper ocean currents
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peng, Q., Xie, S.-P., Wang, D., Huang, R. X., Chen, G., Shu, Y., Shi, J.-R., & Liu, W. Surface warming-induced global acceleration of upper ocean currents. Science Advances, 8(16), (2022): eabj8394, https://doi.org/10.1126/sciadv.abj8394.How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.Q.P. is supported by the National Natural Science Foundation of China (42005035), the Science and Technology Planning Project of Guangzhou (202102020935), and the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ2102). D.W. is supported by the National Natural Science Foundation of China (92158204), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311020004). S.-P.X. is supported by the National Science Foundation (AGS-1934392). Y.S. is supported by the National Key Research and Development Program of China (2016YFC1401702). G.C. is supported by National Natural Science Foundation of China (41822602). The numerical simulation is supported by the High-Performance Computing Division and HPC managers of W. Zhou and D. Sui in the South China Sea Institute of Oceanology
Research on several key technologies of satellite Internet
Satellite Internet has the ability of global seamless coverage, which will be an important part of the future land-sea-air-space integrated network.Firstly, the architecture of satellite Internet was discussed, which included the general composition of the system, networking mode, working process, etc.Secondly, the methods of modeling broadband and narrowband traffic were proposed to extract the uneven space-time distribution characteristics of traffic for satellite Internet.Then, the co-frequency interference of spectrum-sharing was analyzed, showing that there would be more serious co-frequency interference among different non-geostationary satellite orbit (NGSO) constellations in the future.Next, the schemes of both beamforming design for low earth orbit satellite and beam-hopping design for high orbit satellite were explored, which could significantly improve the system capacity through efficient mining of space-domain resources.Finally, the development prospect of several technologies of satellite Internet were given
Multilevel Nitrogen Additions Alter Chemical Composition and Turnover of the Labile Fraction Soil Organic Matter via Effects on Vegetation and Microorganisms
Global nitrogen (N) deposition greatly impacts soil carbon sequestration. A 2- yr multiple N addition (0, 10, 20, 40, 80, and 160 kg N·ha- 1·yr- 1) experiment was conducted in alpine grassland to illustrate the mechanisms underlying the observed soil organic matter (SOM) dynamics on the Qinghai- Tibet Plateau (QTP). Labile fraction SOM (LF- SOM) fingerprints were characterized by pyrolysis- gas chromatography/tandem- mass spectrometry, and microbial functional genes (GeoChip 4.6) were analyzed in conjunction with LF- SOM fingerprints to decipher the responses of LF- SOM transformation to N additions. The significant correlations between LF- SOM and microbial biomass, between organic compounds in LF- SOM and compound degradation- related genes, and between LF- SOM and net ecosystem exchange implied LF- SOM were the main fraction utilized by microorganisms and the most sensitive fraction to N additions. The LF- SOM increased at the lowest N addition levels (10 and 20 kg N·ha- 1·yr- 1) and decreased at higher N addition levels (40 to 160 kg N·ha- 1·yr- 1), but the decrease of LF- SOM was weakened at 160 kg N·ha- 1·yr- 1 addition. The nonlinear response of LF- SOM to N additions was due to the mass balance between plant inputs and microbial degradation. Plant- derived compounds in LF- SOM were more sensitive to N addition than microbial- derived and aromatic compounds. It is predicted that when the N deposition rate increased by 10 kg N·ha- 1·yr- 1 on the QTP, carbon sequestration in the labile fraction may increase by nearly 170% compared with that under the current N deposition rate. These findings provide insight into future N deposition impacts on LF- SOM preservation on the QTP.Key PointsThe LF- SOM quantity increased at the lowest N additions (N10 and N20) and decreased from N40 to N160, but the decrease was weakened at the highest N addition (N160)Plant- derived compounds in LF- SOM were more sensitive to N addition than microbial- derived and aromatic compoundsThe organic compounds in LF- SOM were significantly correlated with compound degradation- related genesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154963/1/jgrg21637_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154963/2/jgrg21637.pd
Recommended from our members
Role of Extreme Indian Ocean Dipole in Regulating Three-Dimensional Freshwater Content in the Southeast Indian Ocean
The tropical Southeast Indian Ocean (SEIO) is a key area linking the global freshwater and heat exchanges. The Indian Ocean Dipole (IOD) fundamentally modulates the Indian Ocean circulation and thus regulates the basin-wide freshwater balance. However, our knowledge of this effect remains limited. Using observational-based data sets, this study suggests that extreme positive IOD events have notable signatures on the three-dimensional freshwater content of the SEIO, leading to the vertically opposite salinity anomalies in the surface and subsurface layers. The wind changes led to the northwestward extension of the South Equatorial Current and intensified Sumatra-Java upwelling. The changing horizontal and vertical currents jointly result in the complicated salinity anomalies. The Equatorial Undercurrent serves as the conduit for water exchange between the equator and the SEIO. This work highlights a strong coupling between the equatorial circulation and the three-dimensional freshwater inventory of the SEIO within the framework of the IOD.
</p
Altered expression pattern of miR-29a, miR-29b and the target genes in myeloid leukemia
OBJECTIVES: The miR-29 family have been demonstrated acting as vital tumor suppressor in multiple cancers as well as regulators in the adaptive immune system. Little is known about their role in leukemogenesis. The purpose of this study is to analyze the expression pattern of miR-29a/29b and its target genes Mcl-1 (myeloid cell leukemia sequence 1) and B-cell lymphoma 2 (Bcl-2) in myeloid leukemia. METHODS: Quantitative real-time PCR was used for detecting genes expression level in peripheral blood mononuclear cells (PBMCs) from 10 cases with newly diagnosed, untreated acute myeloid leukemia (AML) and 14 cases with newly diagnosed, untreated chronic myeloid leukemia (CML) in chronic phase, and 14 healthy individual (HI) served as controls. Correlation between the relative expression levels of different genes have been analyzed. RESULTS: Significant lower expression of miR-29a/29b and higher expression level of two potential target genes Bcl-2 and Mcl-1 were found in PBMCs from AML and CML patients compared with HI group. In addtion, miR-29a expression in AML was significantly lower than that in CML. Moreover, negative correlation between miR-29a/29b and its target genes have been found. While, positive correlation between relative expression level of miR-29a and miR-29b or Bcl-2 and Mcl-1 were presented in the total 38 research objects. CONCLUSION: Down-regulated miR-29a and miR-29b, and accompanying up-regulated Bcl-2 and Mcl-1 are the common feature in myeloid leukemias. These data further support the role for miR-29a/29b dysregulation in myeloid leukemogenesis and the therapeutic promise of regulating miR-29a/29b expression for myeloid leukemia in the future
- …
