2,648 research outputs found

    Arithmetics of 2-friezes

    Full text link
    We consider the variant of Coxeter-Conway frieze patterns called 2-frieze. We prove that there exist infinitely many closed integral 2-friezes (i.e. containing only positive integers) provided the width of the array is bigger than 4. We introduce operations on the integral 2-friezes generating bigger or smaller closed integral 2-friezes.Comment: 20 pages, 7 figure

    Minimal mass blow-up solutions for the L2L^2 critical NLS with inverse-square potential

    Full text link
    We study minimal mass blow-up solutions of the focusing L2L^2 critical nonlinear Schr\"odinger equation with inverse-square potential, itu+Δu+cx2u+u4Nu=0, i\partial_t u + \Delta u + \frac{c}{|x|^2}u+|u|^{\frac{4}{N}}u = 0, with N3N\geqslant 3 and 0<c<(N2)240<c<\frac{(N-2)^2}{4}. We first prove a sharp global well-posedness result: all H1H^1 solutions with a mass (i.e. L2L^2 norm) strictly below that of the ground states are global. Note that, unlike the equation in free space, we do not know if the ground state is unique in the presence of the inverse-square potential. Nevertheless, all ground states have the same, minimal, mass. We then construct and classify finite time blow-up solutions at the minimal mass threshold. Up to the symmetries of the equation, every such solution is a pseudo-conformal transformation of a ground state solution.Comment: Journal version, references added, minor changes including the definition of ground states, Propositions 1 and 3, Remarks 1 and

    Universal Enveloping Algebras of Lie Antialgebras

    Full text link
    Lie antialgebras is a class of supercommutative algebras recently appeared in symplectic geometry. We define the notion of enveloping algebra of a Lie antialgebra and study its properties. We show that every Lie antialgebra is canonically related to a Lie superalgebra and prove that its enveloping algebra is a quotient of the enveloping algebra of the corresponding Lie superalgebra

    Orthogonal Designs and a Cubic Binary Function

    Get PDF
    Orthogonal designs are fundamental mathematical notions used in the construction of space time block codes for wireless transmissions. Designs have two important parameters, the rate and the decoding delay; the main problem of the theory is to construct designs maximizing the rate and minimizing the decoding delay. All known constructions of CODs are inductive or algorithmic. In this paper, we present an explicit construction of optimal CODs. We do not apply recurrent procedures and do calculate the matrix elements directly. Our formula is based on a cubic function in two binary n-vectors. In our previous work (Comm. Math. Phys., 2010, and J. Pure and Appl. Algebra, 2011), we used this function to define a series of non-associative algebras generalizing the classical algebra of octonions and to obtain sum of squares identities of Hurwitz-Radon type

    Well, Papa, can you multiply triplets?

    Get PDF
    We show that the classical algebra of quaternions is a commutative Z2×Z2×Z2\Z_2\times\Z_2\times\Z_2-graded algebra. A similar interpretation of the algebra of octonions is impossible.Comment: 3 page

    Landesman-Lazer conditions at half-eigenvalues of the p-Laplacian

    Full text link
    We study the existence of solutions of the Dirichlet problem {gather} -\phi_p(u')' -a_+ \phi_p(u^+) + a_- \phi_p(u^-) -\lambda \phi_p(u) = f(x,u), \quad x \in (0,1), \label{pb.eq} \tag{1} u(0)=u(1)=0,\label{pb_bc.eq} \tag{2} {gather} where p>1p>1, \phi_p(s):=|s|^{p-1}\sgn s for sRs \in \mathbb{R}, the coefficients a±C0[0,1]a_\pm \in C^0[0,1], λR\lambda \in \mathbb{R}, and u±:=max{±u,0}u^\pm := \max\{\pm u,0\}. We suppose that fC1([0,1]×R)f\in C^1([0,1]\times\mathbb{R}) and that there exists f±C0[0,1]f_\pm \in C^0[0,1] such that limξ±f(x,ξ)=f±(x)\lim_{\xi\to\pm\infty} f(x,\xi) = f_\pm(x), for all x[0,1]x \in [0,1]. With these conditions the problem \eqref{pb.eq}-\eqref{pb_bc.eq} is said to have a `jumping nonlinearity'. We also suppose that the problem {gather} -\phi_p(u')' = a_+ \phi_p(u^+) - a_- \phi_p(u^-) + \lambda \phi_p(u) \quad\text{on} \ (0,1), \tag{3} \label{heval_pb.eq} {gather} together with \eqref{pb_bc.eq}, has a non-trivial solution uu. That is, λ\lambda is a `half-eigenvalue' of \eqref{pb_bc.eq}-\eqref{heval_pb.eq}, and the problem \eqref{pb.eq}-\eqref{pb_bc.eq} is said to be `resonant'. Combining a shooting method with so called `Landesman-Lazer' conditions, we show that the problem \eqref{pb.eq}-\eqref{pb_bc.eq} has a solution. Most previous existence results for jumping nonlinearity problems at resonance have considered the case where the coefficients a±a_\pm are constants, and the resonance has been at a point in the `Fucik spectrum'. Even in this constant coefficient case our result extends previous results. In particular, previous variational approaches have required strong conditions on the location of the resonant point, whereas our result applies to any point in the Fucik spectrum.Comment: 14 page

    Bifurcation along curves for the p-Laplacian with radial symmetry

    Full text link
    We study the global structure of the set of radial solutions of a nonlinear Dirichlet problem involving the p-Laplacian with p>2, in the unit ball of RNR^N, N \ges 1. We show that all non-trivial radial solutions lie on smooth curves of respectively positive and negative solutions and bifurcating from the line of trivial solutions. This involves a local bifurcation result of Crandall-Rabinowitz type, and global continuation arguments relying on monotonicity properties of the equation. An important part of the analysis is dedicated to the delicate issue of differentiability of the inverse p-Laplacian. We thus obtain a complete description of the global continua of positive/negative solutions bifurcating from the first eigenvalue of a weighted, radial, p-Laplacian problem, by using purely analytical arguments, whereas previous related results were proved by topological arguments or a mixture of analytical and topological arguments. Our approach requires stronger hypotheses but yields much stronger results, bifurcation occuring along smooth curves of solutions, and not only connected sets.Comment: Minor changes to the statement and proof of Theorem 1
    corecore