314 research outputs found
Collective dynamics of fermion clouds in cigar-shaped traps
The propagation of zero sound in a spin-polarized Fermi gas under harmonic
confinement is studied as a function of the mean-field interactions with a
second Fermi gas. A local-density treatment is compared with the numerical
solution of the Vlasov-Landau equations for the propagation of density
distortions in a trapped two-component Fermi gas at temperature T=0.2 Tf. The
response of the gas to the sudden creation of a sharp hole at its centre is
also studied numerically.Comment: 15 pages, 6 figure
Broad Feshbach resonance in the 6Li-40K mixture
We study the widths of interspecies Feshbach resonances in a mixture of the
fermionic quantum gases 6Li and 40K. We develop a model to calculate the width
and position of all available Feshbach resonances for a system. Using the model
we select the optimal resonance to study the 6Li/40K mixture. Experimentally,
we obtain the asymmetric Fano lineshape of the interspecies elastic cross
section by measuring the distillation rate of 6Li atoms from a potassium-rich
6Li/40K mixture as a function of magnetic field. This provides us with the
first experimental determination of the width of a resonance in this mixture,
Delta B=1.5(5) G. Our results offer good perspectives for the observation of
universal crossover physics using this mass-imbalanced fermionic mixture.Comment: 4 pages, 2 figure
The effects of pH and aluminum on the growth of the acidophilic diatom Asterionella ralfsii var. americana
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110027/1/lno19913610123.pd
Transition from Collisionless to Hydrodynamic Behaviour in an Ultracold Atomic Gas
Relative motion in a two-component, trapped atomic gas provides a sensitive
probe of interactions. By studying the lowest frequency excitations of a two
spin-state gas confined in a magnetic trap, we have explored the transition
from the collisionless to the hydrodynamic regime. As a function of collision
rate, we observe frequency shifts as large as 6% as well as a dramatic,
non-monotonic dependence of the damping rate. The measurements agree
qualitatively with expectations for behavior in the collisionless and
hydrodynamic limits and are quantitatively compared to a classical kinetic
model.Comment: 5 pages, 4 figure
Photoassociative Production and Trapping of Ultracold KRb Molecules
We have produced ultracold heteronuclear KRb molecules by the process of
photoassociation in a two-species magneto-optical trap. Following decay of the
photoassociated KRb*, the molecules are detected using two-photon ionization
and time-of-flight mass spectroscopy of KRb. A portion of the metastable
triplet molecules thus formed are magnetically trapped. Photoassociative
spectra down to 91 cm below the K(4) + Rb (5) asymptote have
been obtained. We have made assignments to all eight of the attractive Hund's
case (c) KRb* potential curves in this spectral region.Comment: 4 pages, 4 figure
Spin Excitations in a Fermi Gas of Atoms
We have experimentally investigated a spin excitation in a quantum degenerate
Fermi gas of atoms. In the hydrodynamic regime the damping time of the
collective excitation is used to probe the quantum behavior of the gas. At
temperatures below the Fermi temperature we measure up to a factor of 2
reduction in the excitation damping time. In addition we observe a strong
excitation energy dependence for this quantum statistical effect.Comment: 4 pages, 3 figure
Temperature dependence of density profiles for a cloud of non-interacting fermions moving inside a harmonic trap in one dimension
We extend to finite temperature a Green's function method that was previously
proposed to evaluate ground-state properties of mesoscopic clouds of
non-interacting fermions moving under harmonic confinement in one dimension. By
calculations of the particle and kinetic energy density profiles we illustrate
the role of thermal excitations in smoothing out the quantum shell structure of
the cloud and in spreading the particle spill-out from quantum tunnel at the
edges. We also discuss the approach of the exact density profiles to the
predictions of a semiclassical model often used in the theory of confined
atomic gases at finite temperature.Comment: 7 pages, 4 figure
- …
