558 research outputs found
Water quality monitoring, control and management (WQMCM) framework using collaborative wireless sensor networks
Improving water quality is of global concern, with agricultural practices being the major contributors to reduced water quality. The reuse of nutrient-rich drainage water can be a valuable strategy to gain economic-environmental benefits. However, currently the tools and techniques to allow this do not exist. Therefore, we have proposed a framework, WQMCM, which utilises increasingly common local farm-scale networks across a catchment, adding provision for collaborative information sharing. Using this framework, individual sub-networks can learn their environment and predict the impact of catchment events on their locality, allowing dynamic decision making for local irrigation strategies. Since resource constraints of network nodes (e.g. power consumption, computing power etc.) require a simplified predictive model for discharges, therefore low-dimensional model parameters are derived from the existing National Resource Conservation Method (NRCS), utilising real-time field values. Evaluation of the predictive models, developed using M5 decision trees, demonstrates accuracy of 84-94% compared with the traditional NRCS curve number model. The discharge volume and response time model was tested to perform with 6% relative root mean square error (RRMSE), even for a small training set of around 100 samples; however the discharge response time model required a minimum of 300 training samples to show reasonable performance with 16% RRMS
Wireless Sensor Networks:A case study for Energy Efficient Environmental Monitoring
Energy efficiency is a key issue for wireless sensor networks, since sensors nodes can often be powered by non-renewable batteries. In this paper, we examine four MAC protocols in terms of energy consumption, throughput and energy efficiency. A forest fire detection application has been simulated using the well-known ns-2 in order to fully evaluate these protocols
Energy Harvesting and Management for Wireless Autonomous Sensors
Wireless autonomous sensors that harvest ambient energy are attractive solutions, due to their convenience and economic benefits. A number of wireless autonomous sensor platforms which consume less than 100?W under duty-cycled operation are available. Energy harvesting technology (including photovoltaics, vibration harvesters, and thermoelectrics) can be used to power autonomous sensors. A developed system is presented that uses a photovoltaic module to efficiently charge a supercapacitor, which in turn provides energy to a microcontroller-based autonomous sensing platform. The embedded software on the node is structured around a framework in which equal precedent is given to each aspect of the sensor node through the inclusion of distinct software stacks for energy management and sensor processing. This promotes structured and modular design, allowing for efficient code reuse and encourages the standardisation of interchangeable protocols
Resource Aware Sensor Nodes in Wireless Sensor Networks
Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput
The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks
The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management
Data-driven low-complexity nitrate loss model utilizing sensor information – towards collaborative farm management with wireless sensor networks
Energy managed reporting for wireless sensor networks
In this paper, we propose a technique to extend the network lifetime of a wireless sensor network, whereby each sensor node decides its individual network involvement based on its own energy resources and the information contained in each packet. The information content is ascertained through a system of rules describing prospective events in the sensed environment, and how important such events are. While the packets deemed most important are propagated by all sensor nodes, low importance packets are handled by only the nodes with high energy reserves. Results obtained from simulations depicting a wireless sensor network used to monitor pump temperature in an industrial environment have shown that a considerable increase in the network lifetime and network connectivity can be obtained. The results also show that when coupled with a form of energy harvesting, our technique can enable perpetual network operatio
A Structured Hardware/Software Architecture for Embedded Sensor Nodes
Owing to the limited requirement for sensor processing in early networked sensor nodes, embedded software was generally built around the communication stack. Modern sensor nodes have evolved to contain significant on-board functionality in addition to communications, including sensor processing, energy management, actuation and locationing. The embedded software for this functionality, however, is often implemented in the application layer of the communications stack, resulting in an unstructured, top-heavy and complex stack. In this paper, we propose an embedded system architecture to formally specify multiple interfaces on a sensor node. This architecture differs from existing solutions by providing a sensor node with multiple stacks (each stack implements a separate node function), all linked by a shared application layer. This establishes a structured platform for the formal design, specification and implementation of modern sensor and wireless sensor nodes. We describe a practical prototype of an intelligent sensing, energy-aware, sensor node that has been developed using this architecture, implementing stacks for communications, sensing and energy management. The structure and operation of the intelligent sensing and energy management stacks are described in detail. The proposed architecture promotes structured and modular design, allowing for efficient code reuse and being suitable for future generations of sensor nodes featuring interchangeable components
The consequences of not healing: Evidence from the Gukurahundi violence in Zimbabwe
Between 1983 and 1987, an estimated 20 000 people from Matabeleland and parts of Midlands Province in Zimbabwe were killed by government forces in an operation code-named Gukurahundi. Since that time no official apology, justice, reparations or any form of healing process has been offered by the government which was responsible for these atrocities. Many people still suffer trauma from the events of this time.This article reports part of a larger research project which investigated whether the survivors of Gukurahundi could heal themselves via participation over time in a group action research project directed at their healing. The present article focuses on the consequences of failing to heal, based on the experiences and attitudes of the participants. We found that to the extent that healing does not occur: trauma is passed on to the next generation, a strong desire for revenge is felt, and high levels of mistrust are maintained towards the ethnic group involved in the massacres.Keywords: Trauma healing, violence, Gukurahundi, Zimbabwe, action research, transitional justic
- …
