2,062 research outputs found

    Static internal performance of ventral and rear nozzle concepts for short-takeoff and vertical-landing aircraft

    Get PDF
    The internal performance of two exhaust system concepts applicable to single-engine short-take-off and vertical-landing tactical fighter configurations was investigated. These concepts involved blocking (or partially blocking) tailpipe flow to the rear (cruise) nozzle and diverting it through an opening to a ventral nozzle exit for vertical thrust. A set of variable angle vanes at the ventral nozzle exit were used to vary ventral nozzle thrust angle between 45 and 110 deg relative to the positive axial force direction. In the vertical flight mode the rear nozzle (or tailpipe flow to it) was completely blocked. In the transition flight mode flow in the tailpipe was split between the rear and ventral nozzles and the flow was vectored at both exits for aircraft control purposes through this flight regime. In the cruise flight mode the ventral nozzle was sealed and all flow exited through the rear nozzle

    Effect of tail size reductions on longitudinal aerodynamic characteristics of a three surface F-15 model with nonaxisymmetric nozzles

    Get PDF
    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas

    Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability

    Get PDF
    An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to 8.0

    Effects of empennage surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles

    Get PDF
    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10 deg to 20 deg for one selected configuration. Tests were conducted at Mach number 0.60 to 1.20 and at angles of attack -3 to 9 deg. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90

    The Transformation of Sediment Into Rock : Insights From IODP Site U1352, Canterbury Basin, New Zealand

    Get PDF
    ACKNOWLEDGMENTS We thank the crew of the RV JOIDES Resolution for professional seamanship, excellent drilling, and the scientific support on board. GHB and SCG thank the Australia–New Zealand IODP Consortium (ANZIC), and KMM thanks the Consortium for Ocean Leadership U.S. Science Support Program for partly funding this work. Thanks also to funding agencies of the respective authors, and Mark Lawrence (GNS Science) and Cam Nelson (University of Waikato) for their thoughtful comments on an earlier draft. Karsten Kroeger (GNS Science) helped by providing compaction data for New Zealand basins, and Michelle Kominz (Western Michigan University) provided data on which Figure 8 was developed. Further improvements were the result of thoughtful detailed reviews by Gemma Barrie, Bill Heins, Stan Paxton, Associate Editor Joe Macquaker, and Editor Leslie Melim.Peer reviewedPostprin

    George Carson to Jim, 23 September 1957

    Get PDF
    Professional correspondenc

    Alien Registration- Carson, George R. (Caribou, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/26092/thumbnail.jp
    corecore