2,655 research outputs found

    Attosecond resolved charging of clusters

    Full text link
    Attosecond laser pulses open the door to resolve microscopic electron dynamics in time. Experiments performed include the decay of a core hole, the time-resolved measurement of photo ionization and electron tunneling. The processes investigated share the coherent character of the dynamics involving very few, ideally one active electron. Here, we introduce a scheme to probe dissipative multi-electron motion in time. In this context attosecond probing enables one to obtain information which is lost at later times and cannot be retrieved by conventional methods in the energy domain due to the incoherent nature of the dynamics. As a specific example we will discuss the charging of a rare-gas cluster during a strong femtosecond pulse with attosecond pulses. The example illustrates the proposed use of attosecond pulses and suggests an experimental resolution of a controversy about the mechanism of energy absorption by rare-gas clusters in strong vacuum-ultraviolet (VUV) pulses.Comment: 4 pages, 3 figure

    Multiple Pituitary Adenomas: A Systematic Review

    Get PDF

    Adverse reactions of biological therapies in patients with psoriasis

    Get PDF
    Psoriasis is a chronic, immune-mediated disorder characterized by well demarcated, erythematous plaques covered by thick, silvery-white scales, most often located on the knees, elbows, sacral area and scalp. It has a significant impact on the patient\u27s quality of life. Biological therapies revolutionized the treatment of psoriasis vulgaris but there has been concern regarding the use of those agents due to severe adverse reactions reported in patients receiving TNF-α inhibitors for various inflammatory diseases. The aim of this paper is to review the most important adverse reactions reported in patients receiving biological treatments. The most common and severe side effects associated with biologicals are infections, cardiac adverse reactions, neurologic adverse reactions, lymphomas, non-melanoma skin cancers and hepatobiliary disease

    Clusters under strong VUV pulses: A quantum-classical hybrid-description incorporating plasma effects

    Full text link
    The quantum-classical hybrid-description of rare-gas clusters interacting with intense light pulses which we have developed is described in detail. Much emphasis is put on the treatment of screening electrons in the cluster which set the time scale for the evolution of the system and form the link between electrons strongly bound to ions and quasi-free plasma electrons in the cluster. As an example we discuss the dynamics of an Ar147 cluster exposed to a short VUV laser pulse of 20eV photon energy.Comment: 8 pages, 9 figure

    Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons W+/-, II

    Full text link
    We do the spectral analysis of the Hamiltonian for the weak leptonic decay of the gauge bosons W+/-. Using Mourre theory, it is shown that the spectrum between the unique ground state and the first threshold is purely absolutely continuous. Neither sharp neutrino high energy cutoff nor infrared regularization are assumed.Comment: To appear in Ann. Henri Poincar\'

    On perturbations of Dirac operators with variable magnetic field of constant direction

    Full text link
    We carry out the spectral analysis of matrix valued perturbations of 3-dimensional Dirac operators with variable magnetic field of constant direction. Under suitable assumptions on the magnetic field and on the pertubations, we obtain a limiting absorption principle, we prove the absence of singular continuous spectrum in certain intervals and state properties of the point spectrum. Various situations, for example when the magnetic field is constant, periodic or diverging at infinity, are covered. The importance of an internal-type operator (a 2-dimensional Dirac operator) is also revealed in our study. The proofs rely on commutator methods.Comment: 12 page

    Climate change and growing megacities: hazards and vulnerability

    Get PDF
    This paper is a review of geophysical and climatic trends associated with extreme weather events and natural hazards, their implications for urban areas and the effects of continued environmental modification due to urban expansion. It discusses how urban design, technological development and societal behaviour can either ameliorate or worsen climate-induced hazards in urban areas. Pressures – ranging from excessive rainfall causing urban flooding to urban temperature extremes driving air pollution – require more attention to understand, model and predict changes in hazards in urban areas. It concludes that involving different techniques for data analysis and system modelling is more appropriate for practical decision-making than a purely reductionist approach. Successfully determining the future environment of megacities will, however, require joint action with societally informed decision makers, grounded in sound scientific achievements

    Second order perturbation theory for embedded eigenvalues

    Full text link
    We study second order perturbation theory for embedded eigenvalues of an abstract class of self-adjoint operators. Using an extension of the Mourre theory, under assumptions on the regularity of bound states with respect to a conjugate operator, we prove upper semicontinuity of the point spectrum and establish the Fermi Golden Rule criterion. Our results apply to massless Pauli-Fierz Hamiltonians for arbitrary coupling.Comment: 30 pages, 2 figure

    First simultaneous observations of flux transfer events at the high-latitude magnetopause by the cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars

    Get PDF
    Cluster magnetic field data are studied during an outbound pass through the post-noon high-latitude magnetopause region on 14 February 2001. The onset of several minute perturbations in the magnetospheric field was observed in conjunction with a southward turn of the interplanetary magnetic field observed upstream by the ACE spacecraft and lagged to the subsolar magnetopause. These perturbations culminated in the observation of four clear magnetospheric flux transfer events (FTEs) adjacent to the magnetopause, together with a highly-structured magnetopause boundary layer containing related field features. Furthermore, clear FTEs were observed later in the magnetosheath. The magnetospheric FTEs were of essentially the same form as the original “flux erosion events” observed in HEOS-2 data at a similar location and under similar interplanetary conditions by Haerendel et al. (1978). We show that the nature of the magnetic perturbations in these events is consistent with the formation of open flux tubes connected to the northern polar ionosphere via pulsed reconnection in the dusk sector magnetopause. The magnetic footprint of the Cluster spacecraft during the boundary passage is shown to map centrally within the fields-of-view of the CUTLASS SuperDARN radars, and to pass across the field-aligned beam of the EISCAT Svalbard radar (ESR) system. It is shown that both the ionospheric flow and the backscatter power in the CUTLASS data pulse are in synchrony with the magnetospheric FTEs and boundary layer structures at the latitude of the Cluster footprint. These flow and power features are subsequently found to propagate poleward, forming classic “pulsed ionospheric flow” and “poleward-moving radar auroral form” structures at higher latitudes. The combined Cluster-CUTLASS observations thus represent a direct demonstration of the coupling of momentum and energy into the magnetosphere-ionosphere system via pulsed magnetopause reconnection. The ESR observations also reveal the nature of the structured and variable polar ionosphere produced by the structured and time-varying precipitation and flow
    corecore