20 research outputs found
Coastal Tropical Convection in a Stochastic Modeling Framework
Recent research has suggested that the overall dependence of convection near
coasts on large-scale atmospheric conditions is weaker than over the open ocean
or inland areas. This is due to the fact that in coastal regions convection is
often supported by meso-scale land-sea interactions and the topography of
coastal areas. As these effects are not resolved and not included in standard
cumulus parametrization schemes, coastal convection is among the most poorly
simulated phenomena in global models. To outline a possible parametrization
framework for coastal convection we develop an idealized modeling approach and
test its ability to capture the main characteristics of coastal convection. The
new approach first develops a decision algorithm, or trigger function, for the
existence of coastal convection. The function is then applied in a stochastic
cloud model to increase the occurrence probability of deep convection when
land-sea interactions are diagnosed to be important. The results suggest that
the combination of the trigger function with a stochastic model is able to
capture the occurrence of deep convection in atmospheric conditions often found
for coastal convection. When coastal effects are deemed to be present the
spatial and temporal organization of clouds that has been documented form
observations is well captured by the model. The presented modeling approach has
therefore potential to improve the representation of clouds and convection in
global numerical weather forecasting and climate models.Comment: Manuscript submitted for publication in Journal of Advances in
Modeling Earth System
