283 research outputs found

    Vacuum polarization on the spinning circle

    Get PDF
    Vacuum polarization of a massive scalar field in the background of a two-dimensional version of a spinning cosmic string is investigated. It is shown that when the `radius of the universe' is such that spacetime is globally hyperbolic the vacuum fluctuations are well behaved, diverging though on the `chronology horizon'. Naive use of the formulae when spacetime is nonglobally hyperbolic leads to unphysical results. It is also pointed out that the set of normal modes used previously in the literature to address the problem gives rise to two-point functions which do not have a Hadamard form, and therefore are not physically acceptable. Such normal modes correspond to a locally (but not globally) Minkowski time, which appears to be at first sight a natural choice of time to implement quantization.Comment: 3 pages, no figures, REVTeX4, published versio

    Euclidean thermal spinor Green's function in the spacetime of a straight cosmic string

    Full text link
    Within the framework of the quantum field theory at finite temperature on a conical space, we determine the Euclidean thermal spinor Green's function for a massless spinor field. We then calculate the thermal average of the energy-momentum tensor of a thermal bath of massless fermions. In the high-temperature limit, we find that the straight cosmic string does not perturb the thermal bathComment: 11 pages, latex, no figure

    On the scattering amplitude in the Aharonov-Bohm gauge field

    Get PDF
    A general expression for the scattering amplitude of nonrelativistic spinless particles in the Aharonov-Bohm gauge potential is obtained within the time independent formalism. The result is valid also in the backward and forward directions as well as for any choice of the boundary conditions on the wave function at the flux tube position.Comment: 18 pages, plain TE

    Time-dependent quantum scattering in 2+1 dimensional gravity

    Full text link
    The propagation of a localized wave packet in the conical space-time created by a pointlike massive source in 2+1 dimensional gravity is analyzed. The scattering amplitude is determined and shown to be finite along the classical scattering directions due to interference between the scattered and the transmitted wave functions. The analogy with diffraction theory is emphasized.Comment: 15 pages in LaTeX with 3 PostScript figure

    (2+1)-Gravity Solutions with Spinning Particles

    Get PDF
    We derive, in 2+1 dimensions, classical solutions for metric and motion of two or more spinning particles, in the conformal Coulomb gauge introduced previously. The solutions are exact in the NN-body static case, and are perturbative in the particles' velocities in the dynamic two-body case. A natural boundary for the existence of our gauge choice is provided by some ``CTC horizons'' encircling the particles, within which closed timelike curves occur.Comment: 30 pages, LaTeX, no figure

    (2+1)-Gravity with Moving Particles in an Instantaneous Gauge

    Get PDF
    By defining a regular gauge which is conformal-like and provides instantaneous field propagation, we investigate classical solutions of (2+1)-Gravity coupled to arbitrarily moving point-like particles. We show how to separate field equations from self-consistent motion and we provide a solution for the metric and the motion in the two-body case with arbitrary speed, up to second order in the mass parameters.Comment: 16 pages, LaTeX, no figure

    Time-Dependent Open String Solutions in 2+1 Dimensional Gravity

    Full text link
    We find general, time-dependent solutions produced by open string sources carrying no momentum flow in 2+1 dimensional gravity. The local Poincar\'e group elements associated with these solutions and the coordinate transformations that transform these solutions into Minkowski metric are obtained. We also find the relation between these solutions and the planar wall solutions in 3+1 dimensions.Comment: CU-TP-619, 18 pages. (minor changes

    Massive 3+1 Aharonov-Bohm fermions in an MIT cylinder

    Get PDF
    We study the effect of a background flux string on the vacuum energy of massive Dirac fermions in 3+1 dimensions confined to a finite spatial region through MIT boundary conditions. We treat two admissible self-adjoint extensions of the Hamiltonian. The external sector is also studied and unambiguous results for the Casimir energy of massive fermions in the whole space are obtained.Comment: 12 pages, 5 figures, LaTe

    SO(10) Cosmic Strings and Baryon Number Violation

    Full text link
    SO(10) cosmic strings formed during the phase transition Spin(10) \rightarrow SU(5) ×Z2\times{\cal Z}_2 are studied. Two types of strings --- one effectively Abelian and one non-Abelian --- are constructed and the string solutions are calculated numerically. The non-Abelian string can catalyze baryon number violation via the ``twisting'' of the scalar field which causes mixing of leptons and quarks in the fermion multiplet. The non-Abelian string is also found to have the lower energy possibly for the entire range of the parameters in the theory. Scattering of fermions in the fields of the strings is analyzed, and the baryon number violation cross section is calculated. The role of the self-adjoint parameters is discussed and the values are computed.Comment: LaTex (RevTex), 36 pages, 6 figures (available upon request), MIT-CTP#215
    corecore