725 research outputs found

    Metabolic enzymes from psychrophilic bacteria: Challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi

    Full text link
    The enzyme ornithine carbamoyltransferase (OTCase) of Motitella abyssi (OTCase(Mab)), a new, strictly psychrophilic and piezophilic bacterial species, was purified. OTCase(Mab) displays maximal activity at rather low temperatures (23 to 25degreesC) compared to other cold-active enzymes and is much less thermoresistant than its homologues from Escherichia coli or thermophilic procaryotes. In vitro the enzyme is in equilibrium between a trimeric state and a dodecameric, more stable state. The melting point and denaturation enthalpy changes for the two forms are considerably lower than the corresponding values for the dodecameric Pyrococcus furiosus OTCase and for a thermolabile trimeric mutant thereof. OTCase(Mab) displays higher K-m values for ornithine and carbamoyl phosphate than mesophilic and thermophilic OTCases and is only weakly inhibited by the bisubstrate analogue delta-N-phosphonoacetyl-L-ornithine (PALO). OTCase(Mab) differs from other, nonpsychrophilic OTCases by substitutions in the most conserved motifs, which probably contribute to the comparatively high K-m values and the lower sensitivity to PALO. The K. for ornithine, however, is substantially lower at low temperatures. A survey of the catalytic efficiencies (k(cat)/K-m) of OTCases adapted to different temperatures showed that OTCase(Mab) activity remains suboptimal at low temperature despite the 4.5-fold decrease in the K-m value for ornithine observed when the temperature is brought from 20 to 5degreesC. OTCase(Mab) adaptation to cold indicates a trade-off between affinity and catalytic velocity, suggesting that optimization of key metabolic enzymes at low temperatures may be constrained by natural limits

    Mechanical behavior of Ti-5553 alloy. Modeling of representative cells.

    Get PDF
    This work focuses on a new beta metastable titanium alloy, Ti-5553, for aeronautical applications. The goals of this study are the characterization of the two phases (alpha and beta) of this titanium alloy and the numerical modeling of representative cells of this material, which will be used to determine the appropriate microstructure.This thesis is divided into several parts. First, the numerical tools necessary to characterize this alloy and to model representative cells using the periodic homogenization theory will be presented. Secondly, the body-centered cubic beta phase will be identied. Then, the third part will concentrate on the characterization of the hexagonal close-packed alpha phase. Finally, the last part of this thesis will focus on choosing and modeling representative cells containing the phases identfied in the previous parts.The experimental tensile tests performed at different strain rates have demonstrated the necessity of using an elastic-viscous-plastic constitutive law. Guided by macroscopic (tensile and simple shear) experiments, a microscopic plasticity-based constitutive law was chosen to characterize this alloy instead of a macroscopic Norton-Hoff's constitutive one.It will be shown that the beta phase can be fully maintained in macroscopic samples at room temperature, making the characterization of the material behavior of this phase possible from macroscopic experiments. The optimized set of parameters was validated on nanoindentation tests performed in different beta grain orientations. In addition, a sensitivity analysis of several parameters from nanoindentation tests was performed and shows the importance of accurately defining some parameters, such as the exact shape of the indenter, and the negligible influence of other parameters, such as Poisson's ratio. From this study of experimental and numerical nanoindentation tests, it also appears that the orientation of the beta grain indented hardly affects the nanoindentation results.The characterization of the alpha phase was performed using nanoindentation experimental tests available for different grain orientations. This choice was influenced by the impossibility of maintaining only an alpha phase in a macroscopic Ti-5553 sample at room temperature and by the failure to represent the phase accurately from macroscopic (alpha+beta) samples. The material characterization of this phase is complex and difficulties occur when the behavior of this phase has to be characterized for different orientations by only one set of parameters.Finally, experimental microstructures were chosen and their simplied corresponding representative cells were meshed. Numerical simulations of these representative cells were performed and the influence of several parameters will be studied, such as the effect of the appearance of the alpha phase in the beta matrix and the effect of the shape of the alpha phase on the behavior of the cell

    Verification of the radiochemical purity of a labelled optical isomer

    Full text link
    Ce travail présente une méthode pour vérifier la purete radiochimique d'un isomère marqué d'acide amink, qui permet de mesurer l'importance de la contamination par l'autre variété optique. La méthode est appliquée au cas de la L‐phénylalanine tritiée. Elle consiste à ajouter le racémique inactif, puis à préparer un dipeptide avec de l'acide L‐glutamique. Les diastéréoisoméres sont préparés chromatographiquement et la radioactivité de chacun des pics est mesurée. Ce procédé, qui ne nécessite qu'un très petit échantillon, est susceptible de détecter des contaminations extrêmement faibles

    Revisiting differences between atopic and non-atopic asthmatics: When age is shaping airway inflammatory profile

    Full text link
    BACKGROUND: Atopic asthma is one of the most common asthma phenotypes and is generally opposed to the non-atopic counterpart. There have been very few large-scale studies comparing atopic and non-atopic asthmatics in terms of systemic and airway inflammation across the age spectrum. METHODS: Here, we have undertaken a retrospective study investigating 1626 patients (924 atopic and 702 non-atopic asthmatics) recruited from our university asthma clinic who underwent extensive clinical investigations including induced sputum. Atopy was defined by any positive specific IgE to common aeroallergens (>0,35 kU/L). We performed direct comparisons between the groups and sought to appreciate the influence of age on the airway and systemic inflammatory components. The study was approved by the ethics committee of the University Hospital of Liege (Ref. 2016/276). Informed consents were obtained from healthy subjects. RESULTS: Atopic asthmatics were younger (P < .001), had a higher male/female ratio (P < .001), an earlier disease onset (P < .001) and a greater proportion of treated rhinitis (P < .001) while non-atopic asthmatics had greater smoke exposure (P < .001), lower FEV(1)/FVC ratio (P = .01) and diffusing capacity (P < .001). There was no difference between the 2 groups regarding FEV(1) (% predicted), asthma control, asthma quality of life and exacerbations in the previous 12 months. Regarding inflammation, atopic patients had higher FeNO levels (median = 28 ppb, P < .001), were more eosinophilic both in blood (median = 2.8%, P < .001) and in sputum (median = 2.2%, P < .001) while non-atopic patients displayed greater blood (median = 57%, P = .01) and sputum (median = 58.8%, P = .01) neutrophilic inflammation. However, stratifying patients by age showed that non-atopic asthmatics above 50 years old became equally eosinophilic in the sputum (P = .07), but not in the blood, as compared to atopic patients. Likewise, FeNO rose in non-atopic patients after 50 years old but remained, however, lower than in atopic patients. CONCLUSIONS: We conclude that, while sharing many features, atopic group still differentiates from non-atopic asthmatics by demographics, functional and inflammatory profiles. When atopic asthmatics showed a constant eosinophilic pattern across the age spectrum, non-atopic asthmatics were found to be neutrophilic before the age of 50 but eosinophilic above 50 years old

    Intraoperative Ketorolac and Outcomes after Ovarian Cancer Surgery

    Get PDF
    The authors want to thank Laurence Beausaert and Monique Kasa-Vubu, coordinating nurses of gynaecological oncology, Magali Alsteen and Véronique Delhaye for the recording of the data and all the nurses from the operating theatre and the hospitalisation unit (U95) of the cliniques universitaire St Luc. We also want to thank the intensive care unit team for the care of our patients.Peer reviewe

    Serine Hydroxymethyltransferase from the Cold Adapted Microorganism Psychromonas ingrahamii: A Low Temperature Active Enzyme with Broad Substrate Specificity

    Get PDF
    Serine hydroxymethyltransferase from the psychrophilic microorganism Psychromonas ingrahamii was expressed in Escherichia coli and purified as a His-tag fusion protein. The enzyme was characterized with respect to its spectroscopic, catalytic, and thermodynamic properties. The properties of the psychrophilic enzyme have been contrasted with the characteristics of the homologous counterpart from E. coli, which has been structurally and functionally characterized in depth and with which it shares 75% sequence identity. Spectroscopic measures confirmed that the psychrophilic enzyme displays structural properties almost identical to those of the mesophilic counterpart. At variance, the P. ingrahamii enzyme showed decreased thermostability and high specific activity at low temperature, both of which are typical features of cold adapted enzymes. Furthermore, it was a more efficient biocatalyst compared to E. coli serine hydroxymethyltransferase (SHMT) particularly for side reactions. Many β-hydroxy-α-amino acids are SHMT substrates and represent important compounds in the synthesis of pharmaceuticals, agrochemicals and food additives. Thanks to these attractive properties, this enzyme could have a significant potential for biotechnological applications
    corecore