4,459 research outputs found

    A principled information valuation for communications during multi-agent coordination

    No full text
    Decentralised coordination in multi-agent systems is typically achieved using communication. However, in many cases, communication is expensive to utilise because there is limited bandwidth, it may be dangerous to communicate, or communication may simply be unavailable at times. In this context, we argue for a rational approach to communication --- if it has a cost, the agents should be able to calculate a value of communicating. By doing this, the agents can balance the need to communicate with the cost of doing so. In this research, we present a novel model of rational communication that uses information theory to value communications, and employ this valuation in a decision theoretic coordination mechanism. A preliminary empirical evaluation of the benefits of this approach is presented in the context of the RoboCupRescue simulator

    Automated Bilateral Bargaining about Multiple Attributes in a One­ to ­Many Setting

    No full text
    Negotiations are an important way of reaching agreements between selfish autonomous agents. In this paper we focus on one-to-many bargaining within the context of agent-mediated electronic commerce. We consider an approach where a seller agent negotiates over multiple interdependent attributes with many buyer agents in a bilateral fashion. In this setting, "fairness", which corresponds to the notion of envy-freeness in auctions, may be an important business constraint. For the case of virtually unlimited supply (such as information goods), we present a number of one-to-many bargaining strategies for the seller agent, which take into account the fairness constraint, and consider multiple attributes simultaneously. We compare the performance of the bargaining strategies using an evolutionary simulation, especially for the case of impatient buyers. Several of the developed strategies are able to extract almost all the surplus; they utilize the fact that the setting is one-to-many, even though bargaining is bilateral

    Catching Cheats: Detecting Strategic Manipulation in Distributed Optimisation of Electric Vehicle Aggregators

    Full text link
    Given the rapid rise of electric vehicles (EVs) worldwide, and the ambitious targets set for the near future, the management of large EV fleets must be seen as a priority. Specifically, we study a scenario where EV charging is managed through self-interested EV aggregators who compete in the day-ahead market in order to purchase the electricity needed to meet their clients' requirements. With the aim of reducing electricity costs and lowering the impact on electricity markets, a centralised bidding coordination framework has been proposed in the literature employing a coordinator. In order to improve privacy and limit the need for the coordinator, we propose a reformulation of the coordination framework as a decentralised algorithm, employing the Alternating Direction Method of Multipliers (ADMM). However, given the self-interested nature of the aggregators, they can deviate from the algorithm in order to reduce their energy costs. Hence, we study the strategic manipulation of the ADMM algorithm and, in doing so, describe and analyse different possible attack vectors and propose a mathematical framework to quantify and detect manipulation. Importantly, this detection framework is not limited the considered EV scenario and can be applied to general ADMM algorithms. Finally, we test the proposed decentralised coordination and manipulation detection algorithms in realistic scenarios using real market and driver data from Spain. Our empirical results show that the decentralised algorithm's convergence to the optimal solution can be effectively disrupted by manipulative attacks achieving convergence to a different non-optimal solution which benefits the attacker. With respect to the detection algorithm, results indicate that it achieves very high accuracies and significantly outperforms a naive benchmark

    Mechanism design for eliciting probabilistic estimates from multiple suppliers with unknown costs and limited precision

    No full text
    This paper reports on the design of a novel two-stage mechanism, based on strictly proper scoring rules, that allows a centre to acquire a costly probabilistic estimate of some unknown parameter, by eliciting and fusing estimates from multiple suppliers. Each of these suppliers is capable of producing a probabilistic estimate of any precision, up to a privately known maximum, and by fusing several low precision estimates together the centre is able to obtain a single estimate with a specified minimum precision. Specifically, in the mechanism's first stage M from N agents are pre-selected by eliciting their privately known costs. In the second stage, these M agents are sequentially approached in a random order and their private maximum precision is elicited. A payment rule, based on a strictly proper scoring rule, then incentivises them to make and truthfully report an estimate of this maximum precision, which the centre fuses with others until it achieves its specified precision. We formally prove that the mechanism is incentive compatible regarding the costs, maximum precisions and estimates, and that it is individually rational. We present empirical results showing that our mechanism describes a family of possible ways to perform the pre-selection in the first stage, and formally prove that there is one that dominates all others

    A Game-Theoretic Analysis of Market Selection Strategies for Competing Double Auction Marketplaces

    No full text
    In this paper, we propose a novel general framework for analysing competing double auction markets that vie for traders, who then need to choose which market to go to. Based on this framework, we analyse the competition between two markets in detail. Specifically, we game-theoretically analyse the equilibrium behaviour of traders' market selection strategies and adopt evolutionary game theory to investigate how traders dynamically change their strategies, and thus, which equilibrium, if any, can be reached. In so doing, we show that it is unlikely for these competing markets to coexist. Eventually, all traders will always converge to locating themselves at one of the markets. Somewhat surprisingly, we find that sometimes all traders converge to the market that charges higher fees. Thus we further analyse this phenomenon, and specifically determine the factors that affect such migration

    Negotiating Concurrently with Unknown Opponents in Complex, Real-Time Domains

    No full text
    We propose a novel strategy to enable autonomous agents to negotiate concurrently with multiple, unknown opponents in real-time, over complex multi-issue domains. We formalise our strategy as an optimisation problem, in which decisions are based on probabilistic information about the opponents' strategies acquired during negotiation. In doing so, we develop the first principled approach that enables the coordination of multiple, concurrent negotiation threads for practical negotiation settings. Furthermore, we validate our strategy using the agents and domains developed for the International Automated Negotiating Agents Competition (ANAC), and we benchmark our strategy against the state-of-the-art. We find that our approach significantly outperforms existing approaches, and this difference improves even further as the number of available negotiation opponents and the complexity of the negotiation domain increases

    Efficient Methods for Automated Multi-Issue Negotiation: Negotiating over a Two-Part Tariff

    No full text
    In this article, we consider the novel approach of a seller and customer negotiating bilaterally about a two-part tariff, using autonomous software agents. An advantage of this approach is that win-win opportunities can be generated while keeping the problem of preference elicitation as simple as possible. We develop bargaining strategies that software agents can use to conduct the actual bilateral negotiation on behalf of their owners. We present a decomposition of bargaining strategies into concession strategies and Pareto-efficient-search methods: Concession and Pareto-search strategies focus on the conceding and win-win aspect of bargaining, respectively. An important technical contribution of this article lies in the development of two Pareto-search methods. Computer experiments show, for various concession strategies, that the respective use of these two Pareto-search methods by the two negotiators results in very efficient bargaining outcomes while negotiators concede the amount specified by their concession strategy

    Mechanism design for eliciting probabilistic estimates from multiple suppliers with unknown costs and limited precision

    No full text
    This paper reports on the design of a novel two-stage mechanism, based on strictly proper scoring rules, that allows a centre to acquire a costly probabilistic estimate of some unknown parameter, by eliciting and fusing estimates from multiple suppliers. Each of these suppliers is capable of producing a probabilistic estimate of any precision, up to a privately known maximum, and by fusing several low precision estimates together the centre is able to obtain a single estimate with a specified minimum precision. Specifically, in the mechanism's first stage M from N agents are pre-selected by eliciting their privately known costs. In the second stage, these M agents are sequentially approached in a random order and their private maximum precision is elicited. A payment rule, based on a strictly proper scoring rule, then incentivises them to make and truthfully report an estimate of this maximum precision, which the centre fuses with others until it achieves its specified precision. We formally prove that the mechanism is incentive compatible regarding the costs, maximum precisions and estimates, and that it is individually rational. We present empirical results showing that our mechanism describes a family of possible ways to perform the pre-selection in the first stage, and formally prove that there is one that dominates all others

    Adolescent sexting : an examination of the psychosocial contributions to the creation and sharing of sexual images

    Get PDF
    Dissertation co-chairs: Jennifer Stevens Aubrey, Ph.D. and Elizabeth Behm-Morawitz, Ph.D.Includes vita.Sexting, typically defined as the sending, receiving, or forwarding of sexually explicit or suggestive messages or images through cell phones and other mobile devices, is a popular activity among adolescents and is becoming a part of the dating process. Societal concerns about adolescent sexting range from moral panic to legality issues. Similarly, much existing research on sexting centers on legal issues or bullying, while less research considers the health implications of sexting. The most recent research has begun to examine the associations between media socialization and sexting. It is important to understand the various predictors of sexting; this could inform intervention programs centered on this phenomenon. Thus, this study examined the psychosocial predictors of adolescent sexting, focusing specifically on developmental, gendered, and technological explanations. After a pre-test of 220 college-age individuals was completed in order to determine the positive and negative consequences of sexting, a cross-sectional survey of 201 Midwestern adolescents aged 14-17 was conducted. Results showed that higher levels of online disinhibition positively predicted sexting intentions, subjective norms, and behaviors, yet it did not predict sexting attitudes, and these relationships were not moderated by personal fable beliefs or imaginary audience beliefs. Higher levels of online disinhibition also positively predicted the receiving and requesting of sext messages, but not the sending of sext messages. The second set of analyses showed gender differences in sexting: boys had more favorable attitudes about sexting, girls perceived higher levels of subjective norms of sexting, yet there was no difference between sexting intentions or behaviors between boys and girls. Additionally, boys requested sext messages more than girls, but boys and girls were equally likely to send and receive sexting messages. Results also showed that girls received more negative consequences for sexting, while boys received more positive consequences regarding sexting, and boys felt more strongly that girls should receive the negative consequences of sexting compared to girls. Finally, the acceptance of women as sex objects predicted positive sexting attitudes and intentions to sext, but this relationship was not moderated by gender. The third set of analyses showed that higher levels of trait self-objectification positively predicted favorable attitudes about sexting, sexting intentions, and sexting subjective norms for girls, and that self-objectification mediated the relationship between internalization of sexualization and sexting attitudes. Self-objectification did not predict any of the sexting variables for boys, but sociocultural beliefs about attractiveness portrayed in the media positively predicted sexting attitudes, intentions, and subjective norms for boys. The results of this study can usefully inform educational and targeted intervention programs regarding sexting risks.Includes bibliographical references (pages 141-158)
    corecore