658 research outputs found
CVABS: Moving Object Segmentation with Common Vector Approach for Videos
Background modelling is a fundamental step for several real-time computer
vision applications that requires security systems and monitoring. An accurate
background model helps detecting activity of moving objects in the video. In
this work, we have developed a new subspace based background modelling
algorithm using the concept of Common Vector Approach with Gram-Schmidt
orthogonalization. Once the background model that involves the common
characteristic of different views corresponding to the same scene is acquired,
a smart foreground detection and background updating procedure is applied based
on dynamic control parameters. A variety of experiments is conducted on
different problem types related to dynamic backgrounds. Several types of
metrics are utilized as objective measures and the obtained visual results are
judged subjectively. It was observed that the proposed method stands
successfully for all problem types reported on CDNet2014 dataset by updating
the background frames with a self-learning feedback mechanism.Comment: 12 Pages, 4 Figures, 1 Tabl
Block wavelet transforms for image coding
Cataloged from PDF version of article.In this paper, a new class of block transforms is presented.
These transforms are constructed from subband decomposition filter
banks corresponding to regular wavelets. New transforms are compared
to the discrete cosine transform (DCT). Image coding schemes that
employ the block wavelet transform (BWT) are developed. BWT's can be
implemented by fast (O(N log N)) algorithms
Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response
It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes
Salient point region covariance descriptor for target tracking
Cataloged from PDF version of article.Features extracted at salient points are used to construct a
region covariance descriptor (RCD) for target tracking. In the classical
approach, the RCD is computed by using the features at each pixel
location, which increases the computational cost in many cases. This
approach is redundant because image statistics do not change significantly
between neighboring image pixels. Furthermore, this redundancy
may decrease tracking accuracy while tracking large targets because statistics
of flat regions dominate region covariance matrix. In the proposed
approach, salient points are extracted via the Shi and Tomasi’s minimum
eigenvalue method over a Hessian matrix, and the RCD features extracted
only at these salient points are used in target tracking. Experimental
results indicate that the salient point RCD scheme provides comparable
and even better tracking results compared to a classical RCD-based
approach, scale-invariant feature transform, and speeded-up robust
features-based trackers while providing a computationally more efficient
structure. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.OE.52.2.027207
Fault Management Architectures and the Challenges of Providing Software Assurance
Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most missions is system complexity due to a need to establish a multi-dimensional structure across hardware, software and spacecraft operations. FM is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. Generally, FM architecture, implementation, and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (V&V) is challenging. A breakout session at the 2012 NASA Independent Verification & Validation (IV&V) Annual Workshop titled "V&V of Fault Management: Challenges and Successes" exposed this issue in terms of V&V for a representative set of architectures. NASA's Software Assurance Research Program (SARP) has provided funds to NASA IV&V to extend the work performed at the Workshop session in partnership with NASA's Jet Propulsion Laboratory (JPL). NASA IV&V will extract FM architectures across the IV&V portfolio and evaluate the data set, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This SARP initiative focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures and associated V&V/IV&V techniques provides a data set that can enable improved assurance that a system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the space community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research
- …
