13,947 research outputs found

    Control Surface Actuator

    Get PDF
    A device which actuates aircraft control surfaces is disclosed. The actuator is disposed entirely within the control surface structure. This allows the gap between the wing structural box and the control surface to be reduced. Reducing the size of the gap is especially desirable for wings with high aspect ratio, wherein the volume of the structural box is at a premium

    Tight bounds for break minimization

    Get PDF
    We consider round-robin sports tournaments with n teams and n − 1 rounds. We construct an infinite family of opponent schedules for which every home-away assignment induces at least 1/4 n(n−2) breaks. This construction establishes a matching lower bound for a corresponding upper bound from the literature

    Chromosome Centromeres: Structural and Analytical Investigations with High Resolution Scanning Electron Microscopy in Combination with Focused Ion Beam Milling

    Get PDF
    Whole mount mitotic metaphase chromosomes of different plants and animals were investigated with high resolution field emission scanning electron microscopy (FESEM) to study the ultrastructural organization of centromeres, including metacentric, acrocentric, telocentric, and holocentric chromosome variants. It could be shown that, in general, primary constrictions have distinctive ultrastructural features characterized by parallel matrix fibrils and fewer smaller chromomeres. Exposure of these structures depends on cell cycle synchronization prior to chromosome isolation, chromosome size, and chromosome isolation technique. Chromosomes without primary constrictions, small chromosomes, and holocentric chromosomes do not exhibit distinct ultrastructural elements that could be directly correlated to centromere function. Putative spindle structures, although rarely observed, spread over the primary constriction to the bordering pericentric regions. Analytical FESEM techniques, including specific DNA staining with Pt blue, staining of protein as a substance class with silver-colloid, and artificial loosening of fixed chromosomes with proteinase K, were applied, showing that centromere variants and ultrastructural elements in the centromere differ in DNA and protein distribution. Immunogold localization allowed high-resolution comparison between chromosomes with different centromere orientations of the distribution of centromere-related histone variants, phosphorylated histone H3 (ser10), and CENH3. A novel application of FESEM combined with focused ion beam milling (FIB) provided new insights into the spatial distribution of these histone variants in barley chromosomes. Copyright (C) 2009 S. Karger AG, Base

    Design space for low sensitivity to size variations in [110] PMOS nanowire devices: The implications of anisotropy in the quantization mass

    Full text link
    A 20-band sp3d5s* spin-orbit-coupled, semi-empirical, atomistic tight-binding model is used with a semi-classical, ballistic, field-effect-transistor (FET) model, to examine the ON-current variations to size variations of [110] oriented PMOS nanowire devices. Infinitely long, uniform, rectangular nanowires of side dimensions from 3nm to 12nm are examined and significantly different behavior in width vs. height variations are identified and explained. Design regions are identified, which show minor ON-current variations to significant width variations that might occur due to lack of line width control. Regions which show large ON-current variations to small height variations are also identified. The considerations of the full band model here show that ON-current doubling can be observed in the ON-state at the onset of volume inversion to surface inversion transport caused by structural side size variations. Strain engineering can smooth out or tune such sensitivities to size variations. The cause of variations described is the structural quantization behavior of the nanowires, which provide an additional variation mechanism to any other ON-current variations such as surface roughness, phonon scattering etc.Comment: 24 pages, 5 figure

    Ion Sizes and Finite-Size Corrections for Ionic-Solvation Free Energies

    Get PDF
    Free energies of ionic solvation calculated from computer simulations exhibit a strong system size dependence. We perform a finite-size analysis based on a dielectric-continuum model with periodic boundary conditions. That analysis results in an estimate of the Born ion size. Remarkably, the finite-size correction applies to systems with only eight water molecules hydrating a sodium ion and results in an estimate of the Born radius of sodium that agrees with the experimental value.Comment: 2 EPS figure

    Triaxial Black-Hole Nuclei

    Get PDF
    We demonstrate that the nuclei of galaxies containing supermassive black holes can be triaxial in shape. Schwarzschild's method was first used to construct self-consistent orbital superpositions representing nuclei with axis ratios of 1:0.79:0.5 and containing a central point mass representing a black hole. Two different density laws were considered, with power-law slopes of -1 and -2. We constructed two solutions for each power law: one containing only regular orbits and the other containing both regular and chaotic orbits. Monte-Carlo realizations of the models were then advanced in time using an N-body code to verify their stability. All four models were found to retain their triaxial shapes for many crossing times. The possibility that galactic nuclei may be triaxial complicates the interpretation of stellar-kinematical data from the centers of galaxies and may alter the inferred interaction rates between stars and supermassive black holes.Comment: 4 pages, 4 postscript figures, uses emulateapj.st
    corecore