513 research outputs found

    Gravitational torques in spiral galaxies: gas accretion as a driving mechanism of galactic evolution

    Get PDF
    The distribution of gravitational torques and bar strengths in the local Universe is derived from a detailed study of 163 galaxies observed in the near-infrared. The results are compared with numerical models for spiral galaxy evolution. It is found that the observed distribution of torques can be accounted for only with external accretion of gas onto spiral disks. Accretion is responsible for bar renewal - after the dissolution of primordial bars - as well as the maintenance of spiral structures. Models of isolated, non-accreting galaxies are ruled out. Moderate accretion rates do not explain the observational results: it is shown that galactic disks should double their mass in less than the Hubble time. The best fit is obtained if spiral galaxies are open systems, still forming today by continuous gas accretion, doubling their mass every 10 billion years.Comment: 4 pages, 2 figures, Astronomy and Astrophysics Letters (accepted

    Detection of the Ammonium Ion in Space

    Full text link
    We report on the detection of a narrow feature at 262816.73 MHz towards Orion and the cold prestellar core B1-bS, that we attribute to the 1(0)-0(0) line of the deuterated Ammonium ion, NH3D+. The observations were performed with the IRAM 30m radio telescope. The carrier has to be a light molecular species as it is the only feature detected over 3.6 GHz of bandwidth. The hyperfine structure is not resolved indicating a very low value for the electric quadrupolar coupling constant of Nitrogen which is expected for NH3D+ as the electric field over the N nucleus is practically zero. Moreover, the feature is right at the predicted frequency for the 1(0)-0(0) transition of the Ammonium ion, 262817(6) MHz (3sigma), using rotational constants derived from new infrared data obtained in our laboratory in Madrid. The estimated column density is 1.1(0.2)e12 cm-2. Assuming a deuterium enhancement similar to that of NH2D, we derive N(NH4+) sim 2.6e13 cm-2, i.e., an abundance for Ammonium of a few 1e(-11).Comment: Accepted for publication in the Astrophysical Journal Letters 04 June 201

    Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA

    Full text link
    We report the first detection of interstellar mercapto radicals, obtained along the sight-line to the submillimeter continuum source W49N. We have used the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 - 3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant spectrum reveals SH absorption in material local to W49N, as well as in foreground gas, unassociated with W49N, that is located along the sight-line. For the foreground material at velocities in the range 37 - 44 km/s with respect to the local standard of rest, we infer a total SH column density ~ 2.6 E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio is much smaller than that predicted by standard models for the production of SH and H2S in turbulent dissipation regions and shocks, and suggests that the endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse molecular clouds.Comment: Accepted for publication in Astronomy and Astrophysics (SOFIA/GREAT special issue

    The regeneration of stellar bars by tidal interactions. Numerical simulations of fly-by encounters

    Full text link
    We study the regeneration of stellar bars triggered by a tidal interaction, using numerical simulations of either purely stellar or stellar+gas disc galaxies. We find that interactions which are sufficiently strong to regenerate the bar in the purely stellar models do not lead to a regeneration in the dissipative models, owing to the induced gas inflow in those models. In models in which the bar can be regenerated, we find a tight correlation between the strength and the pattern speed of the induced bar. This relation can be explained by a significant radial redistribution of angular momentum in the disc due to the interaction, similar to the processes and correlations found for isolated barred spirals. We furthermore show that the regenerated bars show the same dynamical properties as their isolated counterparts.Comment: 18 pages, 26 figures, accepted for publication in MNRA

    Autobiographical memory: A candidate latent vulnerability mechanism for psychiatric disorder following childhood maltreatment

    Get PDF
    BACKGROUND: Altered autobiographical memory (ABM) functioning has been implicated in the pathogenesis of depression and post-traumatic stress disorder and may represent one mechanism by which childhood maltreatment elevates psychiatric risk. AIMS: To investigate the impact of childhood maltreatment on ABM functioning. METHOD: Thirty-four children with documented maltreatment and 33 matched controls recalled specific ABMs in response to emotionally-valenced cue words during functional magnetic resonance imaging (fMRI). RESULTS: Children with maltreatment experience showed reduced hippocampal and increased middle temporal and para-hippocampal activation during positive ABM recall compared to peers. During negative ABM recall they exhibited increased amygdala activation, and greater amygdala connectivity with the salience network. CONCLUSIONS: Childhood maltreatment is associated with altered ABM functioning, specifically reduced activation in areas encoding specification of positive memories, and greater activation of the salience network for negative memories. This pattern may confer latent vulnerability to future depression and post-traumatic stress disorder

    Magellanic Cloud Structure from Near-IR Surveys II: Star Count Maps and the Intrinsic Elongation of the LMC

    Get PDF
    I construct a near-IR star count map of the LMC and demonstrate, using the viewing angles derived in Paper I, that the LMC is intrinsically elongated. I argue that this is due to the tidal force from the Milky Way. The near-IR data from the 2MASS and DENIS surveys are used to create a star count map of RGB and AGB stars, which is interpreted through ellipse fitting. The radial number density profile is approximately exponential with a scale-length 1.3-1.5 kpc. However, there is an excess density at large radii that may be due to the tidal effect of the Milky Way. The position angle and ellipticity profile converge to PA_maj = 189.3 +/- 1.4 degrees and epsilon = 0.199 +/- 0.008 for r > 5 deg. At large radii there is a drift of the center of the star count contours towards the near side of the plane, which can be undrestood as due to viewing perspective. The fact that PA_maj differes from the line of nodes position angle Theta = 122.5 +/- 8.3 (cf. Paper I) indicates that the LMC disk is not circular, but has an intrinsic ellipticity of 0.31. The LMC is elongated in the general direction of the Galactic center, and is elongated perpendicular to the Magellanic Stream and the velocity vector of the LMC center of mass. This suggests that the elongation of the LMC has been induced by the tidal force of the Milky Way. The position angle of the line of nodes differs from the position angle Theta_max of the line of maximum line of sight velocity gradient: Theta_max - Theta = 20-60 degrees. This could be due to: (a) streaming along non-circular orbits in the elongated disk; (b) uncertainties in the transverse motion of the LMC center of mass; (c) precession and nutation of the LMC disk as it orbits the Milky Way (expected on theoretical grounds). [Abridged]Comment: Astronomical Journal, in press. 34 pages, LaTeX, with 7 PostScript figures. Contains minor revisions with respect to previously posted version. Check out http://www.stsci.edu/~marel/lmc.html for a large scale (23x21 degree) stellar number-density image of the LMC constructed from RGB and AGB stars in the 2MASS and DENIS surveys. The paper is available with higher resolution color figures from http://www.stsci.edu/~marel/abstracts/abs_R32.htm

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page

    An ALMA Early Science survey of molecular absorption lines toward PKS1830-211 -- Analysis of the absorption profiles

    Get PDF
    We present the first results of an ALMA spectral survey of strong absorption lines for common interstellar species in the z=0.89 molecular absorber toward the lensed blazar PKS1830-211. The dataset brings essential information on the structure and composition of the absorbing gas in the foreground galaxy. In particular, we find absorption over large velocity intervals (gtrsim 100 km/s) toward both lensed images of the blazar. This suggests either that the galaxy inclination is intermediate and that we sample velocity gradients or streaming motions in the disk plane, that the molecular gas has a large vertical distribution or extraplanar components, or that the absorber is not a simple spiral galaxy but might be a merger system. The number of detected species is now reaching a total of 42 different species plus 14 different rare isotopologues toward the SW image, and 14 species toward the NE line-of-sight. The abundances of CH, H2O, HCO+, HCN, and NH3 relative to H2 are found to be comparable to those in the Galactic diffuse medium. Of all the lines detected so far toward PKS1830-211, the ground-state line of ortho-water has the deepest absorption. We argue that ground-state lines of water have the best potential for detecting diffuse molecular gas in absorption at high redshift.Comment: Accepted for publication in A&

    Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments

    Full text link
    In the current galaxy formation scenarios, two physical phenomena are invoked to build disk galaxies: hierarchical mergers and more quiescent external gas accretion, coming from intergalactic filaments. Although both are thought to play a role, their relative importance is not known precisely. Here we consider the constraints on these scenarios brought by the observation-deduced star formation history on the one hand, and observed dynamics of galaxies on the other hand: the high frequency of bars and spirals, the high frequency of perturbations such as lopsidedness, warps, or polar rings. All these observations are not easily reproduced in simulations without important gas accretion. N-body simulations taking into account the mass exchange between stars and gas through star formation and feedback, can reproduce the data, only if galaxies double their mass in about 10 Gyr through gas accretion. Warped and polar ring systems are good tracers of this accretion, which occurs from cold gas which has not been virialised in the system's potential. The relative importance of these phenomena are compared between the field and rich clusters. The respective role of mergers and gas accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed. D. Block et al., Kluwe

    The CHESS chemical Herschel surveys of star forming regions: Peering into the protostellar shock L1157-B1. I. Shock chemical complexity

    Get PDF
    We present the first results of the unbiased survey of the L1157-B1 bow shock, obtained with HIFI in the framework of the key program Chemical Herschel surveys of star forming regions (CHESS). The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The bright blue-shifted bow shock B1 is the ideal laboratory for studying the link between the hot (around 1000-2000 K) component traced by H2 IR-emission and the cold (around 10-20 K) swept-up material. The main aim is to trace the warm gas chemically enriched by the passage of a shock and to infer the excitation conditions in L1157-B1. A total of 27 lines are identified in the 555-636 GHz region, down to an average 3 sigma level of 30 mK. The emission is dominated by CO(5-4) and H2O(110-101) transitions, as discussed by Lefloch et al. (2010). Here we report on the identification of lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the profiles produced by molecules released from dust mantles (NH3, H2CO, CH3OH) and that of H2O is consistent with a scenario in which water is also formed in the gas-phase in high-temperature regions where sputtering or grain-grain collisions are not efficient. The high excitation range of the observed tracers allows us to infer, for the first time for these species, the existence of a warm (> 200 K) gas component coexisting in the B1 bow structure with the cold and hot gas detected from ground
    corecore