513 research outputs found
Gravitational torques in spiral galaxies: gas accretion as a driving mechanism of galactic evolution
The distribution of gravitational torques and bar strengths in the local
Universe is derived from a detailed study of 163 galaxies observed in the
near-infrared. The results are compared with numerical models for spiral galaxy
evolution. It is found that the observed distribution of torques can be
accounted for only with external accretion of gas onto spiral disks. Accretion
is responsible for bar renewal - after the dissolution of primordial bars - as
well as the maintenance of spiral structures. Models of isolated, non-accreting
galaxies are ruled out. Moderate accretion rates do not explain the
observational results: it is shown that galactic disks should double their mass
in less than the Hubble time. The best fit is obtained if spiral galaxies are
open systems, still forming today by continuous gas accretion, doubling their
mass every 10 billion years.Comment: 4 pages, 2 figures, Astronomy and Astrophysics Letters (accepted
Detection of the Ammonium Ion in Space
We report on the detection of a narrow feature at 262816.73 MHz towards Orion
and the cold prestellar core B1-bS, that we attribute to the 1(0)-0(0) line of
the deuterated Ammonium ion, NH3D+. The observations were performed with the
IRAM 30m radio telescope. The carrier has to be a light molecular species as it
is the only feature detected over 3.6 GHz of bandwidth. The hyperfine structure
is not resolved indicating a very low value for the electric quadrupolar
coupling constant of Nitrogen which is expected for NH3D+ as the electric field
over the N nucleus is practically zero. Moreover, the feature is right at the
predicted frequency for the 1(0)-0(0) transition of the Ammonium ion, 262817(6)
MHz (3sigma), using rotational constants derived from new infrared data
obtained in our laboratory in Madrid. The estimated column density is
1.1(0.2)e12 cm-2. Assuming a deuterium enhancement similar to that of NH2D, we
derive N(NH4+) sim 2.6e13 cm-2, i.e., an abundance for Ammonium of a few
1e(-11).Comment: Accepted for publication in the Astrophysical Journal Letters 04 June
201
Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA
We report the first detection of interstellar mercapto radicals, obtained
along the sight-line to the submillimeter continuum source W49N. We have used
the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 -
3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant
spectrum reveals SH absorption in material local to W49N, as well as in
foreground gas, unassociated with W49N, that is located along the sight-line.
For the foreground material at velocities in the range 37 - 44 km/s with
respect to the local standard of rest, we infer a total SH column density ~ 2.6
E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and
yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio
is much smaller than that predicted by standard models for the production of SH
and H2S in turbulent dissipation regions and shocks, and suggests that the
endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along
with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse
molecular clouds.Comment: Accepted for publication in Astronomy and Astrophysics (SOFIA/GREAT
special issue
The regeneration of stellar bars by tidal interactions. Numerical simulations of fly-by encounters
We study the regeneration of stellar bars triggered by a tidal interaction,
using numerical simulations of either purely stellar or stellar+gas disc
galaxies. We find that interactions which are sufficiently strong to regenerate
the bar in the purely stellar models do not lead to a regeneration in the
dissipative models, owing to the induced gas inflow in those models. In models
in which the bar can be regenerated, we find a tight correlation between the
strength and the pattern speed of the induced bar. This relation can be
explained by a significant radial redistribution of angular momentum in the
disc due to the interaction, similar to the processes and correlations found
for isolated barred spirals. We furthermore show that the regenerated bars show
the same dynamical properties as their isolated counterparts.Comment: 18 pages, 26 figures, accepted for publication in MNRA
Autobiographical memory: A candidate latent vulnerability mechanism for psychiatric disorder following childhood maltreatment
BACKGROUND: Altered autobiographical memory (ABM) functioning has been
implicated in the pathogenesis of depression and post-traumatic stress disorder and
may represent one mechanism by which childhood maltreatment elevates psychiatric
risk.
AIMS: To investigate the impact of childhood maltreatment on ABM functioning.
METHOD: Thirty-four children with documented maltreatment and 33 matched controls
recalled specific ABMs in response to emotionally-valenced cue words during
functional magnetic resonance imaging (fMRI).
RESULTS: Children with maltreatment experience showed reduced hippocampal and
increased middle temporal and para-hippocampal activation during positive ABM
recall compared to peers. During negative ABM recall they exhibited increased
amygdala activation, and greater amygdala connectivity with the salience network.
CONCLUSIONS: Childhood maltreatment is associated with altered ABM functioning,
specifically reduced activation in areas encoding specification of positive memories,
and greater activation of the salience network for negative memories. This pattern
may confer latent vulnerability to future depression and post-traumatic stress
disorder
Magellanic Cloud Structure from Near-IR Surveys II: Star Count Maps and the Intrinsic Elongation of the LMC
I construct a near-IR star count map of the LMC and demonstrate, using the
viewing angles derived in Paper I, that the LMC is intrinsically elongated. I
argue that this is due to the tidal force from the Milky Way. The near-IR data
from the 2MASS and DENIS surveys are used to create a star count map of RGB and
AGB stars, which is interpreted through ellipse fitting. The radial number
density profile is approximately exponential with a scale-length 1.3-1.5 kpc.
However, there is an excess density at large radii that may be due to the tidal
effect of the Milky Way. The position angle and ellipticity profile converge to
PA_maj = 189.3 +/- 1.4 degrees and epsilon = 0.199 +/- 0.008 for r > 5 deg. At
large radii there is a drift of the center of the star count contours towards
the near side of the plane, which can be undrestood as due to viewing
perspective. The fact that PA_maj differes from the line of nodes position
angle Theta = 122.5 +/- 8.3 (cf. Paper I) indicates that the LMC disk is not
circular, but has an intrinsic ellipticity of 0.31. The LMC is elongated in the
general direction of the Galactic center, and is elongated perpendicular to the
Magellanic Stream and the velocity vector of the LMC center of mass. This
suggests that the elongation of the LMC has been induced by the tidal force of
the Milky Way. The position angle of the line of nodes differs from the
position angle Theta_max of the line of maximum line of sight velocity
gradient: Theta_max - Theta = 20-60 degrees. This could be due to: (a)
streaming along non-circular orbits in the elongated disk; (b) uncertainties in
the transverse motion of the LMC center of mass; (c) precession and nutation of
the LMC disk as it orbits the Milky Way (expected on theoretical grounds).
[Abridged]Comment: Astronomical Journal, in press. 34 pages, LaTeX, with 7 PostScript
figures. Contains minor revisions with respect to previously posted version.
Check out http://www.stsci.edu/~marel/lmc.html for a large scale (23x21
degree) stellar number-density image of the LMC constructed from RGB and AGB
stars in the 2MASS and DENIS surveys. The paper is available with higher
resolution color figures from
http://www.stsci.edu/~marel/abstracts/abs_R32.htm
Submillimeter Emission from Water in the W3 Region
We have mapped the submillimeter emission from the 1(10)-1(01) transition of
ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3
IRS5 region reveals strong water lines at half the positions in the map. The
relative strength of the Odin lines compared to previous observations by SWAS
suggests that we are seeing water emission from an extended region. Across much
of the map the lines are double-peaked, with an absorption feature at -39 km/s;
however, some positions in the map show a single strong line at -43 km/s. We
interpret the double-peaked lines as arising from optically thick,
self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted
lines originate in emission near W3 IRS4. In this model, the unusual appearance
of the spectral lines across the map results from a coincidental agreement in
velocity between the emission near W3 IRS4 and the blue peak of the more
complex lines near W3 IRS5. The strength of the water lines near W3 IRS4
suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page
An ALMA Early Science survey of molecular absorption lines toward PKS1830-211 -- Analysis of the absorption profiles
We present the first results of an ALMA spectral survey of strong absorption
lines for common interstellar species in the z=0.89 molecular absorber toward
the lensed blazar PKS1830-211. The dataset brings essential information on the
structure and composition of the absorbing gas in the foreground galaxy. In
particular, we find absorption over large velocity intervals (gtrsim 100 km/s)
toward both lensed images of the blazar. This suggests either that the galaxy
inclination is intermediate and that we sample velocity gradients or streaming
motions in the disk plane, that the molecular gas has a large vertical
distribution or extraplanar components, or that the absorber is not a simple
spiral galaxy but might be a merger system. The number of detected species is
now reaching a total of 42 different species plus 14 different rare
isotopologues toward the SW image, and 14 species toward the NE line-of-sight.
The abundances of CH, H2O, HCO+, HCN, and NH3 relative to H2 are found to be
comparable to those in the Galactic diffuse medium. Of all the lines detected
so far toward PKS1830-211, the ground-state line of ortho-water has the deepest
absorption. We argue that ground-state lines of water have the best potential
for detecting diffuse molecular gas in absorption at high redshift.Comment: Accepted for publication in A&
Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments
In the current galaxy formation scenarios, two physical phenomena are invoked
to build disk galaxies: hierarchical mergers and more quiescent external gas
accretion, coming from intergalactic filaments. Although both are thought to
play a role, their relative importance is not known precisely. Here we consider
the constraints on these scenarios brought by the observation-deduced star
formation history on the one hand, and observed dynamics of galaxies on the
other hand: the high frequency of bars and spirals, the high frequency of
perturbations such as lopsidedness, warps, or polar rings.
All these observations are not easily reproduced in simulations without
important gas accretion. N-body simulations taking into account the mass
exchange between stars and gas through star formation and feedback, can
reproduce the data, only if galaxies double their mass in about 10 Gyr through
gas accretion. Warped and polar ring systems are good tracers of this
accretion, which occurs from cold gas which has not been virialised in the
system's potential. The relative importance of these phenomena are compared
between the field and rich clusters. The respective role of mergers and gas
accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks
of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed.
D. Block et al., Kluwe
The CHESS chemical Herschel surveys of star forming regions: Peering into the protostellar shock L1157-B1. I. Shock chemical complexity
We present the first results of the unbiased survey of the L1157-B1 bow
shock, obtained with HIFI in the framework of the key program Chemical Herschel
surveys of star forming regions (CHESS). The L1157 outflow is driven by a
low-mass Class 0 protostar and is considered the prototype of the so-called
chemically active outflows. The bright blue-shifted bow shock B1 is the ideal
laboratory for studying the link between the hot (around 1000-2000 K) component
traced by H2 IR-emission and the cold (around 10-20 K) swept-up material. The
main aim is to trace the warm gas chemically enriched by the passage of a shock
and to infer the excitation conditions in L1157-B1. A total of 27 lines are
identified in the 555-636 GHz region, down to an average 3 sigma level of 30
mK. The emission is dominated by CO(5-4) and H2O(110-101) transitions, as
discussed by Lefloch et al. (2010). Here we report on the identification of
lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the
profiles produced by molecules released from dust mantles (NH3, H2CO, CH3OH)
and that of H2O is consistent with a scenario in which water is also formed in
the gas-phase in high-temperature regions where sputtering or grain-grain
collisions are not efficient. The high excitation range of the observed tracers
allows us to infer, for the first time for these species, the existence of a
warm (> 200 K) gas component coexisting in the B1 bow structure with the cold
and hot gas detected from ground
- …
