201 research outputs found
First Results on In-Beam gamma Spectroscopy of Neutron-Rich Na and Mg Isotopes at REX-ISOLDE
After the successful commissioning of the radioactive beam experiment at
ISOLDE (REX-ISOLDE) - an accelerator for exotic nuclei produced by ISOLDE -
first physics experiments using these beams were performed. Initial experiments
focused on the region of deformation in the vicinity of the neutron-rich Na and
Mg isotopes. Preliminary results show the high potential and physics
opportunities offered by the exotic isotope accelerator REX in conjunction with
the modern Germanium gamma spectrometer MINIBALL.Comment: 7 pages, RNB6 conference contributio
Inclusive pion and eta production in p+Nb collisions at 3.5 GeV beam energy
Data on inclusive pion and eta production measured with the dielectron
spectrometer HADES in the reaction p+93Nb at a kinetic beam energy of 3.5 GeV
are presented. Our results, obtained with the photon conversion method,
supplement the rather sparse information on neutral meson production in
proton-nucleus reactions existing for this bombarding energy regime. The
reconstructed e+e-e+e- transverse-momentum and rapidity distributions are
confronted with transport model calculations, which account fairly well for
both pi0 and eta production.Comment: 12 pages, 9 figures, submitted to Physical Review
Shape coexistence in the neutron-deficient even-even Hg182-188 isotopes studied via Coulomb excitation
Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0(+) states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0(+) state was noted in Hg-182; 184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established
Inclusive Dielectron Production in Ar+KCl Collisions at 1.76 AGeV studied with HADES
Results of the HADES measurement of inclusive dielectron production in Ar+KCl
collisions at a kinetic beam energy of 1.76 AGeV are presented. For the first
time, high mass resolution spectroscopy was performed. The invariant mass
spectrum of dielectrons is compared with predictions of UrQMD and HSD transport
codes.Comment: 4 pages, 3 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
Future perspectives at SIS-100 with HADES-at-FAIR
Currently, the HADES spectrometer undergoes un upgrade program to be prepared
for measurements at the upcoming SIS-100 synchrotron at FAIR. We describe the
current status of the HADES di-electron measurements at the SIS-18 and our
future plans for SIS-100.Comment: Invited contribution presented at the XLVII International Winter
Meeting on Nuclear Physics, Bormio (Italy), Jan. 26-30, 200
Quasi-free (p,pN) scattering of light neutron-rich nuclei around N = 14
Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The RB3 collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable C12 beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p,pn) and (p,2p) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N=14 to N=15. Method: The structure of the projectiles O23, O22, and N21 has been studied simultaneously via (p,pn) and (p,2p) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B-LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p,pn) and (p,2p) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p,pn) channels, indications of a change in the structure of these nuclei moving from N=14 to N=15 have been observed, i.e., from the 0d5/2 shell to the 1s1/2. This supports previous observations of a subshell closure at N=14 for neutron-rich oxygen isotopes and its weakening for the nitrogen isotopes
Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type OA(p,2p)NA-1 have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry
Effective proton-neutron interaction near the drip line from unbound states in 25,26 F
Background: Odd-odd nuclei, around doubly closed shells, have been extensively used to study proton-neutron interactions. However, the evolution of these interactions as a function of the binding energy, ultimately when nuclei become unbound, is poorly known. The F26 nucleus, composed of a deeply bound π0d5/2 proton and an unbound ν0d3/2 neutron on top of an O24 core, is particularly adapted for this purpose. The coupling of this proton and neutron results in a Jπ=11+-41+ multiplet, whose energies must be determined to study the influence of the proximity of the continuum on the corresponding proton-neutron interaction. The Jπ=11+,21+,41+ bound states have been determined, and only a clear identification of the Jπ=31+ is missing. Purpose: We wish to complete the study of the Jπ=11+-41+ multiplet in F26, by studying the energy and width of the Jπ=31+ unbound state. The method was first validated by the study of unbound states in F25, for which resonances were already observed in a previous experiment. Method: Radioactive beams of Ne26 and Ne27, produced at about 440AMeV by the fragment separator at the GSI facility were used to populate unbound states in F25 and F26 via one-proton knockout reactions on a CH2 target, located at the object focal point of the R3B/LAND setup. The detection of emitted γ rays and neutrons, added to the reconstruction of the momentum vector of the A-1 nuclei, allowed the determination of the energy of three unbound states in F25 and two in F26. Results: Based on its width and decay properties, the first unbound state in F25, at the relative energy of 49(9) keV, is proposed to be a Jπ=1/2- arising from a p1/2 proton-hole state. In F26, the first resonance at 323(33) keV is proposed to be the Jπ=31+ member of the Jπ=11+-41+ multiplet. Energies of observed states in F25,26 have been compared to calculations using the independent-particle shell model, a phenomenological shell model, and the ab initio valence-space in-medium similarity renormalization group method. Conclusions: The deduced effective proton-neutron interaction is weakened by about 30-40% in comparison to the models, pointing to the need for implementing the role of the continuum in theoretical descriptions or to a wrong determination of the atomic mass of F26
Charged pion production in C+C and Ar+KCl collisions measured with HADES
Results of a study of charged pion production in 12C+12C collisions at
incident beam energies of 1A GeV and 2A GeV, and 40Ar+natKCl at 1.76AGeV, using
the spectrometer HADES at GSI, are presented. We have performed a measurement
of the transverse momentum distributions of pi+- mesons covering a fairly large
rapidity interval, in case of the C+C collision system for the first time. The
yields, transverse mass and angular distributions are compared with a transport
model as well as with existing data from other experiments.Comment: 7 pages, 2 figures Contribution presented at the XLVII International
Winter Meeting on Nuclear Physics, Bormio (Italy), Jan. 26-30, 200
Observation of a correlated free four-neutron system
A long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades(1), with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far(2-4), leaving the tetraneutron an elusive nuclear system for six decades. Here we report on the observation of a resonance-like structure near threshold in the four-neutron system that is consistent with a quasi-bound tetraneutron state existing for a very short time. The measured energy and width of this state provide a key benchmark for our understanding of the nuclear force. The use of an experimental approach based on a knockout reaction at large momentum transfer with a radioactive high-energy He-8 beam was key
- …
