441 research outputs found
RSK1 dependency in FLT3-ITD acute myeloid leukemia
Internal tandem duplications (ITD) in fms-like tyrosine kinase 3 (FLT3) represent the most common genetic alteration in de novo acute myeloid leukemia (AML). Here, we identify ribosomal protein s6 kinase a1 (RSK1) as a core dependency in FLT3-ITD AML and unveil the existence of crucial bi-directional regulation. RSK1 perturbation resulted in marked apoptosis and abrogated phosphorylation of FLT3 and associated downstream signaling cascades in FLT3-ITD AML cell lines. Using cycloheximide, MG-132, and ubiquitination assays, we further demonstrate mechanistically that RSK1 regulates FLT3-ITD activity, and protein stability through deubiqutinase USP1, which we identify as a second dependency. Importantly, multivariate analysis revealed heightened expression of RPS6KA1 and USP1 to be associated with poor patient prognosis, and these effectors may serve as biomarkers predictive of patient survival and therapeutic response to FLT3-ITD inhibitors. Lastly, RSK1 inhibition utilizing a first-in-class RSK inhibitor, PMD-026, that is currently undergoing Phase 2 development for breast cancer, diminished leukemic disease burden in MV4-11 xenograft and syngeneic Flt
Tumor immune microenvironmental characteristics in Human Epidermal Growth Factor-2 (HER2) positive esophageal adenocarcinoma:A comparative analysis and biomarker study
BACKGROUND: HER2 targeting in esophageal adenocarcinoma (EAC) has shown potential, but often fails to show durable response. Given the contributions of the tumor immune microenvironment (TIME) to therapeutic responses, we aimed to chart the TIME characteristics of HER2 positive tumors.METHODS: 84 biopsies were taken from the TRAP cohort (neoadjuvant chemoradiotherapy (nCRT) according to CROSS with trastuzumab and pertuzumab; n = 40; HER2 +n = 40) and a control cohort with nCRT only (n = 44; HER2- n = 40, HER2 +n = 4) before treatment. Biopsies were analysed using targeted gene expression analysis (Nanostring immune-oncology panel, 750 genes). Differential gene expression was assessed between HER2 positive (n = 44) vs. negative biopsies (n = 40), and non-responders (n = 17) vs. responders (n = 23) to anti-HER2 treatment. Statistical significance was determined as p-value <0.05, adjusted for multiple testing correction. RESULTS: 83 biopsies were eligible for analyses following quality control (TRAP cohort n = 40; control cohort n = 43); there were no significant differences in clinical characteristics between the TRAP vs. control the cohort or HER2 positive vs. HER2 negative biopsies. HER2 expression was found to associate with epithelial markers (EPCAM p < 0.001; E-cadherin p < 0.001). Moreover, HER2 expression was associated with a lower expression of immune cell infiltration, such as NK-cells (p < 0.001) and CD8 T-cells (p < 0.001), but also lower expression of immune exhaustion markers (PDCD1LG2, CTLA4; p < 0.001). In non-responders to anti-HER2 treatment, baseline biopsies showed increased expression of immune exhaustion markers, as well as hypoxia and VEGF signalling.DISCUSSION: HER2 expression was associated with epithelial tumor characteristics. The HER2 positive TIME showed reduced immune cell infiltration but also lower expression of inhibitory signals associated with immune exhaustion, questioning the mechanism behind potential clinical benefit of co-administration of anti-HER2 agents and checkpoint inhibitors. As limited response was associated with increased VEGF signalling, studies could investigate potential synergism of targeting VEGF and HER2.</p
Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding
Tumor immune microenvironmental characteristics in Human Epidermal Growth Factor-2 (HER2) positive esophageal adenocarcinoma: A comparative analysis and biomarker study
Background: HER2 targeting in esophageal adenocarcinoma (EAC) has shown potential, but often fails to show durable response. Given the contributions of the tumor immune microenvironment (TIME) to therapeutic responses, we aimed to chart the TIME characteristics of HER2 positive tumors. Methods: 84 biopsies were taken from the TRAP cohort (neoadjuvant chemoradiotherapy (nCRT) according to CROSS with trastuzumab and pertuzumab; n = 40; HER2+ n = 40) and a control cohort with nCRT only (n = 44; HER2- n = 40, HER2+ n = 4) before treatment. Biopsies were analysed using targeted gene expression analysis (Nanostring immune-oncology panel, 750 genes). Differential gene expression was assessed between HER2 positive (n = 44) vs. negative biopsies (n = 40), and non-responders (n = 17) vs. responders (n = 23) to anti-HER2 treatment. Statistical significance was determined as p-value <0.05, adjusted for multiple testing correction. Results: 83 biopsies were eligible for analyses following quality control (TRAP cohort n = 40; control cohort n = 43); there were no significant differences in clinical characteristics between the TRAP vs. control the cohort or HER2 positive vs. HER2 negative biopsies. HER2 expression was found to associate with epithelial markers (EPCAM p < 0.001; E-cadherin p < 0.001). Moreover, HER2 expression was associated with a lower expression of immune cell infiltration, such as NK-cells (p < 0.001) and CD8 T-cells (p < 0.001), but also lower expression of immune exhaustion markers (PDCD1LG2, CTLA4; p < 0.001). In non-responders to anti-HER2 treatment, baseline biopsies showed increased expression of immune exhaustion markers, as well as hypoxia and VEGF signalling. Discussion: HER2 expression was associated with epithelial tumor characteristics. The HER2 positive TIME showed reduced immune cell infiltration but also lower expression of inhibitory signals associated with immune exhaustion, questioning the mechanism behind potential clinical benefit of co-administration of anti-HER2 agents and checkpoint inhibitors. As limited response was associated with increased VEGF signalling, studies could investigate potential synergism of targeting VEGF and HER2
Therapeutic Potential of the Poly(ADP-ribose) Polymerase Inhibitor Rucaparib for the Treatment of Sporadic Human Ovarian Cancer
Abstract
Here, we investigate the potential role of the PARP inhibitor rucaparib (CO-338, formerly known as AG014699 and PF-01367338) for the treatment of sporadic ovarian cancer. We studied the growth inhibitory effects of rucaparib in a panel of 39 ovarian cancer cell lines that were each characterized for mutation and methylation status of BRCA1/2, baseline gene expression signatures, copy number variations of selected genes, PTEN status, and sensitivity to platinum-based chemotherapy. To study interactions with chemotherapy, we used multiple drug effect analyses and assessed apoptosis, DNA fragmentation, and γH2AX formation. Concentration-dependent antiproliferative effects of rucaparib were seen in 26 of 39 (67%) cell lines and were not restricted to cell lines with BRCA1/2 mutations. Low expression of other genes involved in homologous repair (e.g., BCCIP, BRCC3, ATM, RAD51L1), amplification of AURKA or EMSY, and response to platinum-based chemotherapy was associated with sensitivity to rucaparib. Drug interactions with rucaparib were synergistic for topotecan, synergistic, or additive for carboplatin, doxorubicin or paclitaxel, and additive for gemcitabine. Synergy was most pronounced when rucaparib was combined with topotecan, which resulted in enhanced apoptosis, DNA fragmentation, and γH2AX formation. Importantly, rucaparib potentiated chemotherapy independent of its activity as a single agent. PARP inhibition may be a useful therapeutic strategy for a wider range of ovarian cancers bearing deficiencies in the homologous recombination pathway other than just BRCA1/2 mutations. These results support further clinical evaluation of rucaparib either as a single agent or as an adjunct to chemotherapy for the treatment of sporadic ovarian cancer. Mol Cancer Ther; 12(6); 1002–15. ©2013 AACR.</jats:p
Every Flare, Everywhere: An All-Sky Untriggered Search for Astrophysical Neutrino Transients Using IceCube Data
Searches for Neutrinos from Precursors and Afterglows of Gamma-Ray Bursts using the IceCube Neutrino Observatory
Hybrid cosmic ray measurements using the IceAct telescopes in coincidence with the IceCube and IceTop detectors
IceAct is a proposed surface array of compact (50 cm diameter) and cost-effective Imaging Air Cherenkov Telescopes installed at the site of the IceCube Neutrino Observatory at the geographic South Pole. Since January 2019, two IceAct telescope demonstrators, featuring 61 silicon photomultiplier (SiPM) pixels have been taking data in the center of the IceTop surface array during the austral winter. We present the first analysis of hybrid cosmic ray events detected by the IceAct imaging air-Cherenkov telescopes in coincidence with the IceCube Neutrino Observatory, including the IceTop surface array and the IceCube in-ice array. By featuring an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors, enabling significantly better primary particle type discrimination on a statistical basis. The hybrid measurement also allows for detailed feasibility studies of detector cross-calibration and of cosmic ray veto capabilities for neutrino analyses. We present the performance of the telescopes, the results from the analysis of two years of data, and an outlook of a hybrid simulation for a future telescope array
- …
