4,111 research outputs found
Evaluation of ignition mechanisms in selected spacecraft materials Final report, 1 Mar. - 30 Jun. 1967
Evaluation of ignition mechanisms for spacecraft materials in simulated spacecraft cabin atmosphere
Connected to Give: Key Findings
This is the first in a series of reports based upon the wealth of data from National Study of American Jewish Giving. The key findings represent the top level of information gleaned from the studies, but there is much more to be explored. In addition to findings that relate giving to demography and identity, there are additional data about specific populations, particular areas of interest, and individual modes of giving
Evaluation of ignition mechanisms in selected nonmetallic materials
Test program evaluates thermal and electric ignition mechanisms in selected nonmetallic materials found in spacecraft with concentrated oxygen atmospheres. The phenomena evaluated were spontaneous ignition, ignition of flammable vapor by a spark, and ignition by an arc where the arc produces the combustible vapor and the ignition source
A study of aircraft fire hazards related to natural electrical phenomena Final report, Jun. 1966 - Jul. 1967
Natural electrical phenomena as aircraft fire hazards, with study of flame propagation in fuel vent system
Minimal distance transformations between links and polymers: Principles and examples
The calculation of Euclidean distance between points is generalized to
one-dimensional objects such as strings or polymers. Necessary and sufficient
conditions for the minimal transformation between two polymer configurations
are derived. Transformations consist of piecewise rotations and translations
subject to Weierstrass-Erdmann corner conditions. Numerous examples are given
for the special cases of one and two links. The transition to a large number of
links is investigated, where the distance converges to the polymer length times
the mean root square distance (MRSD) between polymer configurations, assuming
curvature and non-crossing constraints can be neglected. Applications of this
metric to protein folding are investigated. Potential applications are also
discussed for structural alignment problems such as pharmacophore
identification, and inverse kinematic problems in motor learning and control.Comment: Submitted to J. Phys.:Condens. Matte
Semi-leptonic (1968) decays as a scalar meson probe
The unusual multiplet structures associated with the light spin zero mesons
have recently attracted a good deal of theoretical attention. Here we discuss
some aspects associated with the possibility of getting new experimental
information on this topic from semi-leptonic decays of heavy charged mesons
into an isosinglet scalar or pseudoscalar plus leptons.Comment: 11 pages, 4 figure
Neutrino spin relaxation in medium with stochastic characteristics
The helicity evolution of a neutrino interacting with randomly moving and
polarized matter is studied. We derive the equation for the averaged neutrino
helicity. The type of the neutrino interaction with background fermions is not
fixed. In the particular case of a tau-neutrino interacting with
ultrarelativistic electron-positron plasma we obtain the expression for the
neutrino helicity relaxation rate in the explicit form. We study the neutrino
spin relaxation in the relativistic primordial plasma. Supposing that the
conversion of left-handed neutrinos into right-handed ones is suppressed at the
early stages of the Universe evolution we get the upper limit on the
tau-neutrino mass.Comment: 6 pages, RevTeX4; 2 references added; more detailed discussion of
correlation functions and cosmological neutrinos is presented; version to be
published in Int. J. Mod. Phys.
Suppression of electron spin decoherence in a quantum dot
The dominant source of decoherence for an electron spin in a quantum dot is
the hyperfine interaction with the surrounding bath of nuclear spins. The
decoherence process may be slowed down by subjecting the electron spin to
suitable sequences of external control pulses. We investigate the performance
of a variety of dynamical decoupling protocols using exact numerical
simulation. Emphasis is given to realistic pulse delays and the long-time
limit, beyond the domain where available analytical approaches are guaranteed
to work. Our results show that both deterministic and randomized protocols are
capable to significantly prolong the electron coherence time, even when using
control pulse separations substantially larger than what expected from the {\em
upper cutoff} frequency of the coupling spectrum between the electron and the
nuclear spins. In a realistic parameter range, the {\em total width} of such a
coupling spectrum appears to be the physically relevant frequency scale
affecting the overall quality of the decoupling.Comment: 8 pages, 3 figures. Invited talk at the XXXVII Winter Colloquium on
the Physics of Quantum Electronics, Snowbird, Jan 2007. Submitted to J. Mod.
Op
The role of the slope of `realistic' potential barriers in preventing relativistic tunnelling in the Klein zone
The transmission of fermions of mass m and energy E through an electrostatic
potential barrier of rectangular shape (i.e. supporting an infinite electric
field), of height U> E + m - due to the many-body nature of the Dirac equation
evidentiated by the Klein paradox - has been widely studied. We exploit here
the analytical solution, given by Sauter for the linearly rising potential
step, to show that the tunnelling rate through a more realistic trapezoidal
barrier is exponentially depressed, as soon as the length of the regions
supporting a finite electric field exceeds the Compton wavelenght of the
particle - the latter circumstance being hardly escapable in most realistic
cases
- …
