4,111 research outputs found

    Evaluation of ignition mechanisms in selected spacecraft materials Final report, 1 Mar. - 30 Jun. 1967

    Get PDF
    Evaluation of ignition mechanisms for spacecraft materials in simulated spacecraft cabin atmosphere

    Connected to Give: Key Findings

    Get PDF
    This is the first in a series of reports based upon the wealth of data from National Study of American Jewish Giving. The key findings represent the top level of information gleaned from the studies, but there is much more to be explored. In addition to findings that relate giving to demography and identity, there are additional data about specific populations, particular areas of interest, and individual modes of giving

    Evaluation of ignition mechanisms in selected nonmetallic materials

    Get PDF
    Test program evaluates thermal and electric ignition mechanisms in selected nonmetallic materials found in spacecraft with concentrated oxygen atmospheres. The phenomena evaluated were spontaneous ignition, ignition of flammable vapor by a spark, and ignition by an arc where the arc produces the combustible vapor and the ignition source

    A study of aircraft fire hazards related to natural electrical phenomena Final report, Jun. 1966 - Jul. 1967

    Get PDF
    Natural electrical phenomena as aircraft fire hazards, with study of flame propagation in fuel vent system

    Minimal distance transformations between links and polymers: Principles and examples

    Full text link
    The calculation of Euclidean distance between points is generalized to one-dimensional objects such as strings or polymers. Necessary and sufficient conditions for the minimal transformation between two polymer configurations are derived. Transformations consist of piecewise rotations and translations subject to Weierstrass-Erdmann corner conditions. Numerous examples are given for the special cases of one and two links. The transition to a large number of links is investigated, where the distance converges to the polymer length times the mean root square distance (MRSD) between polymer configurations, assuming curvature and non-crossing constraints can be neglected. Applications of this metric to protein folding are investigated. Potential applications are also discussed for structural alignment problems such as pharmacophore identification, and inverse kinematic problems in motor learning and control.Comment: Submitted to J. Phys.:Condens. Matte

    Semi-leptonic Ds+D_s^+(1968) decays as a scalar meson probe

    Get PDF
    The unusual multiplet structures associated with the light spin zero mesons have recently attracted a good deal of theoretical attention. Here we discuss some aspects associated with the possibility of getting new experimental information on this topic from semi-leptonic decays of heavy charged mesons into an isosinglet scalar or pseudoscalar plus leptons.Comment: 11 pages, 4 figure

    Neutrino spin relaxation in medium with stochastic characteristics

    Full text link
    The helicity evolution of a neutrino interacting with randomly moving and polarized matter is studied. We derive the equation for the averaged neutrino helicity. The type of the neutrino interaction with background fermions is not fixed. In the particular case of a tau-neutrino interacting with ultrarelativistic electron-positron plasma we obtain the expression for the neutrino helicity relaxation rate in the explicit form. We study the neutrino spin relaxation in the relativistic primordial plasma. Supposing that the conversion of left-handed neutrinos into right-handed ones is suppressed at the early stages of the Universe evolution we get the upper limit on the tau-neutrino mass.Comment: 6 pages, RevTeX4; 2 references added; more detailed discussion of correlation functions and cosmological neutrinos is presented; version to be published in Int. J. Mod. Phys.

    Suppression of electron spin decoherence in a quantum dot

    Full text link
    The dominant source of decoherence for an electron spin in a quantum dot is the hyperfine interaction with the surrounding bath of nuclear spins. The decoherence process may be slowed down by subjecting the electron spin to suitable sequences of external control pulses. We investigate the performance of a variety of dynamical decoupling protocols using exact numerical simulation. Emphasis is given to realistic pulse delays and the long-time limit, beyond the domain where available analytical approaches are guaranteed to work. Our results show that both deterministic and randomized protocols are capable to significantly prolong the electron coherence time, even when using control pulse separations substantially larger than what expected from the {\em upper cutoff} frequency of the coupling spectrum between the electron and the nuclear spins. In a realistic parameter range, the {\em total width} of such a coupling spectrum appears to be the physically relevant frequency scale affecting the overall quality of the decoupling.Comment: 8 pages, 3 figures. Invited talk at the XXXVII Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Jan 2007. Submitted to J. Mod. Op

    The role of the slope of `realistic' potential barriers in preventing relativistic tunnelling in the Klein zone

    Full text link
    The transmission of fermions of mass m and energy E through an electrostatic potential barrier of rectangular shape (i.e. supporting an infinite electric field), of height U> E + m - due to the many-body nature of the Dirac equation evidentiated by the Klein paradox - has been widely studied. We exploit here the analytical solution, given by Sauter for the linearly rising potential step, to show that the tunnelling rate through a more realistic trapezoidal barrier is exponentially depressed, as soon as the length of the regions supporting a finite electric field exceeds the Compton wavelenght of the particle - the latter circumstance being hardly escapable in most realistic cases
    corecore