2,818 research outputs found
Perturbation theory for the two-dimensional abelian Higgs model in the unitary gauge
In the unitary gauge the unphysical degrees of freedom of spontaneously
broken gauge theories are eliminated. The Feynman rules are simpler than in
other gauges, but it is non-renormalizable by the rules of power counting. On
the other hand, it is formally equal to the limit of the
renormalizable R-gauge. We consider perturbation theory to one-loop
order in the R-gauge and in the unitary gauge for the case of the
two-dimensional abelian Higgs model. An apparent conflict between the unitary
gauge and the limit of the R-gauge is resolved, and it is
demonstrated that results for physical quantities can be obtained in the
unitary gauge.Comment: 15 pages, LaTeX2e, uses the feynmf package, formulations correcte
Communications Biophysics
Contains reports on three research projects.United States Air Force (Contract AF19(604)-4112
Anisotropy of the Cosmic Neutrino Background
The cosmic neutrino background (CNB) consists of low-energy relic neutrinos
which decoupled from the cosmological fluid at a redshift z ~ 10^{10}. Despite
being the second-most abundant particles in the universe, direct observation
remains a distant challenge. Based on the measured neutrino mass differences,
one species of neutrinos may still be relativistic with a thermal distribution
characterized by the temperature T ~ 1.9K. We show that the temperature
distribution on the sky is anisotropic, much like the photon background,
experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.Comment: 5 pages, 2 figures / updated references, discussion of earlier wor
Spin-dynamics of the low-dimensional magnet (CH3)2NH2CuCl3
Dimethylammonium copper (II) chloride (also known as DMACuCl3 or MCCL) is a
low dimensional S=1/2 quantum spin system proposed to be an alternating
ferro-antiferromagnetic chain with similar magnitude ferromagnetic (FM) and
antiferromagnetic (AFM) exchange interactions. Subsequently, it was shown that
the existing bulk measurements could be adequately modeled by considering
DMACuCl3 as independent AFM and FM dimer spin pairs. We present here new
inelastic neutron scattering measurements of the spin-excitations in single
crystals of DMACuCl3. These results show significant quasi-one-dimensional
coupling, however the magnetic excitations do not propagate along the expected
direction. We observe a band of excitations with a gap of 0.95 meV and a
bandwidth of 0.82 meV.Comment: 3 pages, 2 figures included in text, submitted to proceedings of
International Conference on Neutron Scattering, December 200
New Upper Limits on the Tau Neutrino Mass from Primordial Helium Considerations
In this paper we reconsider recently derived bounds on tau neutrinos,
taking into account previously unaccounted for effects. We find that, assuming
that the neutrino life-time is longer than , the constraint
rules out masses in the range
for Majorana neutrinos and
for Dirac neutrinos. Given that the present
laboratory bound is 35 MeV, our results lower the present bound to and
for Majorana and Dirac neutrinos respectively.Comment: 9 pages (2 figures available upon request), UM-AC-93-0
Direct Detection of Warm Dark Matter in the X-ray
We point out a serendipitous link between warm dark matter (WDM) models for
structure formation on the one hand and the high sensitivity energy range (1-10
keV) for x-ray photon detection on the Chandra and XMM-Newton observatories on
the other. This fortuitous match may provide either a direct detection of the
dark matter or exclusion of many candidates. We estimate expected x-ray fluxes
from field galaxies and clusters of galaxies if the dark matter halos of these
objects are composed of WDM candidate particles with rest masses in the
structure formation-preferred range (~1 keV to ~20 keV) and with small
radiative decay branches. Existing observations lead us to conclude that for
singlet neutrinos (possessing a very small mixing with active neutrinos) to be
a viable WDM candidate they must have rest masses < 5 keV in the zero lepton
number production mode. Future deeper observations may detect or exclude the
entire parameter range for the zero lepton number case, perhaps restricting the
viability of singlet neutrino WDM models to those where singlet production is
driven by a significant lepton number. The Constellation X project has the
capability to detect/exclude singlet neutrino WDM for lepton number values up
to 10% of the photon number. We also consider diffuse x-ray background
constraints on these scenarios. These same x-ray observations additionally may
constrain parameters of active neutrino and gravitino WDM candidates.Comment: 11 pages, 6 figures, replacement to match ApJ versio
Communications Biophysics
Contains reports on four research projects.National Institutes of Health (Grant MH-04737-03)National Science Foundation (Grant G-16526)National Aeronautics and Space Administration (Grant NsG-496
Spectra of Discrete Schr\"odinger Operators with Primitive Invertible Substitution Potentials
We study the spectral properties of discrete Schr\"odinger operators with
potentials given by primitive invertible substitution sequences (or by Sturmian
sequences whose rotation angle has an eventually periodic continued fraction
expansion, a strictly larger class than primitive invertible substitution
sequences). It is known that operators from this family have spectra which are
Cantor sets of zero Lebesgue measure. We show that the Hausdorff dimension of
this set tends to as coupling constant tends to . Moreover, we
also show that at small coupling constant, all gaps allowed by the gap labeling
theorem are open and furthermore open linearly with respect to .
Additionally, we show that, in the small coupling regime, the density of states
measure for an operator in this family is exact dimensional. The dimension of
the density of states measure is strictly smaller than the Hausdorff dimension
of the spectrum and tends to as tends to
First Passage Time Densities in Non-Markovian Models with Subthreshold Oscillations
Motivated by the dynamics of resonant neurons we consider a differentiable,
non-Markovian random process and particularly the time after which it
will reach a certain level . The probability density of this first passage
time is expressed as infinite series of integrals over joint probability
densities of and its velocity . Approximating higher order terms
of this series through the lower order ones leads to closed expressions in the
cases of vanishing and moderate correlations between subsequent crossings of
. For a linear oscillator driven by white or coloured Gaussian noise,
which models a resonant neuron, we show that these approximations reproduce the
complex structures of the first passage time densities characteristic for the
underdamped dynamics, where Markovian approximations (giving monotonous first
passage time distribution) fail
Lagrangian Becchi-Rouet-Stora-Tyutin treatment of collective coordinates
The Becchi-Rouet-Stora-Tyutin (BRST) treatment for the quantization of
collective coordinates is considered in the Lagrangian formalism. The motion of
a particle in a Riemannian manifold is studied in the case when the classical
solutions break a non-abelian global invariance of the action. Collective
coordinates are introduced, and the resulting gauge theory is quantized in the
BRST antifield formalism. The partition function is computed perturbatively to
two-loops, and it is shown that the results are independent of gauge-fixing
parameters.Comment: LaTeX file, 26 pages, PostScript figures at end of fil
- …
