147 research outputs found

    A narrative analysis of career transition themes and outcomes using chaos theory as a guiding metaphor

    Get PDF
    In a rapidly changing world of work little research exists on mid-career transitions. We investigated these using the open-systems approach of chaos theory as a guiding metaphor and conducted interviews with seven mid-career individuals chosen for their experience of a significant mid-career transition. Four common themes were identified through narrative analysis, where ‘false starts’ to a career were a common experience prior to finding a career ‘fit’. Career transitions, precipitated by a trigger state and/or event such as a period of disillusionment, were an important part of this ‘finding a fit’ process. Overall, career success outcomes were shaped by a combination of chaos elements: chance, unplanned events, and non-linearity of resultant outcomes. We discuss implications for future research and for practice

    Northern hemisphere stratosphere-troposphere circulation change in CMIP6 models: 1. Inter-model spread and scenario sensitivity

    Get PDF
    Projected changes in the Northern Hemisphere stratospheric polar vortex are analyzed using Climate Model Intercomparison Project Phase 6 experiments. Previous studies showed that projections of the wintertime zonally averaged polar vortex strength diverge widely between climate models with no agreement on the sign of change, and that this uncertainty contributes to the regional climate change uncertainty. Here, we show that there remains large uncertainty in the projected strength of the polar vortex in experiments with global warming levels ranging from moderate (SSP245 runs) to large (Abrupt-4xCO(2) runs), and that the uncertainty maximizes in winter. Partitioning of the uncertainty in wintertime polar vortex strength projections reveals that, by the end of the 21st century, model uncertainty contributes half of the total uncertainty, with scenario uncertainty contributing only 10%. Regression analysis shows that up to 20% of the intermodel spread in projected precipitation over the Iberian Peninsula and northwestern US, and 20%-30% in near-surface temperature over western US and northern Eurasian, can be associated with the spread in vortex strength projections after accounting for global warming. While changes in the magnitude and sign of the zonally averaged vortex strength are uncertain, most models (>95%) predict an eastward shift of the vortex by 8 degrees-20 degrees degrees in longitude relative to its historical location with the magnitude of the shift increasing for larger global warming levels. There is less agreement across models on a latitudinal shift, whose direction and magnitude correlate with changes in the zonally averaged vortex strength so that vortex weakening/strengthening corresponds to a southward/poleward shift

    Northern hemisphere stratosphere-troposphere circulation change in CMIP6 models: 2. mechanisms and sources of the spread

    Get PDF
    We analyze the sources for spread in the response of the Northern Hemisphere wintertimestratospheric polar vortex (SPV) to global warming in Climate Model Intercomparison Project Phase 5 (CMIP5)and Phase 6 (CMIP6) model projections. About half of the intermodel spread in SPV projections by CMIP6models, but less than a third in CMIP5 models, can be attributed to the intermodel spread in stationary planetarywave driving. In CMIP6, SPV weakening is mostly driven by increased upward wave flux from the troposphere,while SPV strengthening is associated with increased equatorward wave propagation away from the polarstratosphere. We test hypothesized factors contributing to changes in the upward and equatorward planetarywave fluxes and show that an across‐model regression using projected global warming rates, strengthening ofthe subtropical jet and basic state lower stratospheric wind biases as predictors can explain nearly the samefraction in the CMIP6 SPV spread as the planetary wave driving (r = 0.67). The dependence of the SPV spreadon the model biases in the basic state winds offers a possible emergent constraint; however, a large uncertaintyprevents a substantial reduction of the projected SPV spread. The lack of this dependence in CMIP5 further callsfor better understanding of underlying causes. Our results improve understanding of projected SPV uncertainty;however, further narrowing of the uncertainty remains challenging

    Cysteine mutations in the ebolavirus matrix protein VP40 promote phosphatidylserine binding by increasing the flexibility of a lipid-binding loop

    Get PDF
    Ebolavirus (EBOV) is a negative-sense RNA virus that causes severe hemorrhagic fever in humans. The matrix protein VP40 facilitates viral budding by binding to lipids in the host cell plasma membrane and driving the formation of filamentous, pleomorphic virus particles. The C-terminal domain of VP40 contains two highly-conserved cysteine residues at positions 311 and 314, but their role in the viral life cycle is unknown. We therefore investigated the properties of VP40 mutants in which the conserved cysteine residues were replaced with alanine. The C311A mutation significantly increased the affinity of VP40 for membranes containing phosphatidylserine (PS), resulting in the assembly of longer virus-like particles (VLPs) compared to wild-type VP40. The C314A mutation also increased the affinity of VP40 for membranes containing PS, albeit to a lesser degree than C311A. The double mutant behaved in a similar manner to the individual mutants. Computer modeling revealed that both cysteine residues restrain a loop segment containing lysine residues that interact with the plasma membrane, but Cys311 has the dominant role. Accordingly, the C311A mutation increases the flexibility of this membrane-binding loop, changes the profile of hydrogen bonding within VP40 and therefore binds to PS with greater affinity. This is the first evidence that mutations in VP40 can increase its affinity for biological membranes and modify the length of Ebola VLPs. The Cys311 and Cys314 residues therefore play an important role in dynamic interactions at the plasma membrane by modulating the ability of VP40 to bind PS

    Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts

    Get PDF
    Extreme stratospheric polar vortex events, such as sudden stratospheric warmings (SSWs) or extremely strong polar vortex events, can have a significant impact on surface weather in winter. SSWs are most often associated with negative North Atlantic Oscillation (NAO) conditions, cold air outbreaks in the Arctic and a southward-shifted midlatitude storm track in the North Atlantic, while strong polar vortex events tend to be followed by a positive phase of the NAO, relatively warm conditions in the extratropics and a poleward-shifted storm track. Such changes in the storm track position and associated extratropical cyclone frequency over the North Atlantic and Europe can increase the risk of extreme windstorm, flooding or heavy snowfall over populated regions. Skillful predictions of the downward impact of stratospheric polar vortex extremes can therefore improve the predictability of extratropical winter storms on subseasonal timescales. However, there exists a strong inter-event variability in these downward impacts on the tropospheric storm track. Using ECMWF reanalysis data and reforecasts from the Subseasonal to Seasonal (S2S) Prediction Project database, we investigate the stratospheric influence on extratropical cyclones, identified with a cyclone detection algorithm. Following SSWs, there is an equatorward shift in cyclone frequency over the North Atlantic and Europe in reforecasts, and the opposite response is observed after strong polar vortex events, consistent with the response in reanalysis. However, although the response of cyclone frequency following SSWs with a canonical surface impact is typically captured well during weeks 1–4, less than 25 % of the reforecasts manage to capture the response following SSWs with a “non-canonical” impact. This suggests a possible overconfidence in the reforecasts with respect to reanalysis in predicting the canonical response after SSWs, although it only occurs in about two-thirds of the events. The cyclone forecasts following strong polar vortex events are generally more successful. Understanding the role of the stratosphere in subseasonal variability and predictability of storm tracks during winter can provide a key for reliable forecasts of midlatitude storms and their surface impacts.</p

    Projections and uncertainties of winter windstorm damage in Europe in a changing climate

    Get PDF
    Winter windstorms are among the most significant natural hazards in Europe linked to fatalities and substantial damage. However, projections of windstorm impact in Europe under climate change are highly uncertain. This study combines climate projections from 30 general circulation models participating in Phase 6 of the Coupled Model Intercomparison Project (CMIP6) with the climate risk assessment model CLIMADA to obtain projections of windstorm-induced damage over Europe in a changing climate. We conduct an uncertainty–sensitivity analysis and find large uncertainties in the projected changes in the damage, with climate model uncertainty being the dominant factor of uncertainty in the projections. We investigate the spatial patterns of the climate change-induced modifications in windstorm damage and find an increase in the damage in northwestern and northern central Europe and a decrease over the rest of Europe, in agreement with an eastward extension of the North Atlantic storm track into Europe. We combine all 30 available climate models in an ensemble-of-opportunity approach and find evidence for an intensification of future climate windstorm damage, in which damage with return periods of 100 years under current climate conditions becomes damage with return periods of 28 years under future SSP585 climate scenarios. Our findings demonstrate the importance of climate model uncertainty for the CMIP6 projections of windstorms in Europe and emphasize the increasing need for risk mitigation due to extreme weather in the future.</p

    Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    Get PDF
    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation
    corecore