358 research outputs found

    An in vivo neovascularization assay for screening regulators of angiogenesis and assessing their effects on pre-existing vessels

    Get PDF
    Therapeutic regulation of tissue vascularization has appeared as an attractive approach to treat a number of human diseases. In vivo neovascularization assays that reflect physiological and pathological formation of neovessels are important in this effort. In this report we present an assay where the effects of activators and inhibitors of angiogenesis can be quantitatively and qualitatively measured. A provisional matrix composed of collagen I and fibrin was formed in a plastic cylinder and implanted onto the chick chorioallantoic membrane. A nylon mesh separated the implanted matrix from the underlying tissue to distinguish new from pre-existing vessels. Vascularization of the matrix in response to fibroblast growth factor-2 or platelet-derived growth factor-BB was scored in a double-blinded manner, or vessel density was measured using a semi-automated image analysis procedure. Thalidomide, fumagillin, U0126 and TGFβ inhibited neovessel growth while hydrocortisone exerted a negative and wortmannin a toxic effect on the pre-existing vasculature. This quantitative, inexpensive and rapid in vivo angiogenesis assay might be a valuable tool in screening and characterizing factors that influence wound or tumor induced vascularization and in assessing their effects on the normal vasculatur

    Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing

    Get PDF
    ER stress results in activation of the unfolded protein response and has been implicated in the development of fibrotic diseases. In this study, we show that inhibition of the ER stress-induced IRE1α signaling pathway, using the inhibitor 4μ8C, blocks TGFβ-induced activation of myofibroblasts in vitro, reduces liver and skin fibrosis in vivo, and reverts the fibrotic phenotype of activated myofibroblasts isolated from patients with systemic sclerosis. By using IRE1α(-/-) fibroblasts and expression of IRE1α-mutant proteins lacking endoribonuclease activity, we confirmed that IRE1α plays an important role during myofibroblast activation. IRE1α was shown to cleave miR-150 and thereby to release the suppressive effect that miR-150 exerted on αSMA expression through c-Myb. Inhibition of IRE1α was also demonstrated to block ER expansion through an XBP-1-dependent pathway. Taken together, our results suggest that ER stress could be an important and conserved mechanism in the pathogenesis of fibrosis and that components of the ER stress pathway may be therapeutically relevant for treating patients with fibrotic diseases

    p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2–stimulated angiogenesis

    Get PDF
    The p38 mitogen–activated protein kinase (p38) is activated in response to environmental stress and inflammatory cytokines. Although several growth factors, including fibroblast growth factor (FGF)-2, mediate activation of p38, the consequences for growth factor–dependent cellular functions have not been well defined. We investigated the role of p38 activation in FGF-2–induced angiogenesis. In collagen gel cultures, bovine capillary endothelial cells formed tubular growth-arrested structures in response to FGF-2. In these collagen gel cultures, p38 activation was induced more potently by FGF-2 treatment compared with that in proliferating cultures. Treatment with the p38 inhibitor SB202190 enhanced FGF-2–induced tubular morphogenesis by decreasing apoptosis, increasing DNA synthesis and cell proliferation, and enhancing the kinetics of cell differentiation including increased expression of the Notch ligand Jagged1. Overexpression of dominant negative mutants of the p38-activating kinases MKK3 and MKK6 also supported FGF-2–induced tubular morphogenesis. Sustained activation of p38 by FGF-2 was identified in vascular endothelial cells in vivo in the chick chorioallantoic membrane (CAM). SB202190 treatment enhanced FGF-2–induced neovascularization in the CAM, but the vessels displayed abnormal features indicative of hyperplasia of endothelial cells. These results implicate p38 in organization of new vessels and suggest that p38 is an essential regulator of FGF-2–driven angiogenesis

    Minor Abnormalities of Testis Development in Mice Lacking the Gene Encoding the MAPK Signalling Component, MAP3K1

    Get PDF
    In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD) have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK) signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB) phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans

    Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a liver tumor that usually arises in patients with cirrhosis. Hepatic stellate cells are key players in the progression of HCC, as they create a fibrotic micro-environment and produce growth factors and cytokines that enhance tumor cell proliferation and migration. We assessed the role of endoplasmic reticulum (ER) stress in the cross-talk between stellate cells and HCC-cells. Mice with a fibrotic HCC were treated with the IRE1α-inhibitor 4μ8C, which reduced tumor burden and collagen deposition. By co-culturing HCC-cells with stellate cells, we found that HCC-cells activate IREα in stellate cells, thereby contributing to their activation. Inhibiting IRE1α blocked stellate cell activation, which then decreased proliferation and migration of tumor cells in different in vitro 2D and 3D co-cultures. In addition, we also observed cell-line specific direct effects of inhibiting IRE1α in tumor cells

    An in vivo neovascularization assay for screening regulators of angiogenesis and assessing their effects on pre-existing vessels

    Get PDF
    Therapeutic regulation of tissue vascularization has appeared as an attractive approach to treat a number of human diseases. In vivo neovascularization assays that reflect physiological and pathological formation of neovessels are important in this effort. In this report we present an assay where the effects of activators and inhibitors of angiogenesis can be quantitatively and qualitatively measured. A provisional matrix composed of collagen I and fibrin was formed in a plastic cylinder and implanted onto the chick chorioallantoic membrane. A nylon mesh separated the implanted matrix from the underlying tissue to distinguish new from pre-existing vessels. Vascularization of the matrix in response to fibroblast growth factor-2 or platelet-derived growth factor-BB was scored in a double-blinded manner, or vessel density was measured using a semi-automated image analysis procedure. Thalidomide, fumagillin, U0126 and TGF beta inhibited neovessel growth while hydrocortisone exerted a negative and wortmannin a toxic effect on the pre-existing vasculature. This quantitative, inexpensive and rapid in vivo angiogenesis assay might be a valuable tool in screening and characterizing factors that influence wound or tumor induced vascularization and in assessing their effects on the normal vasculature

    Health and welfare of Atlantic salmon in FishGLOBE V5 -a novel closed containment system at sea

    Get PDF
    Closed-containment (CCS) systems offer several advantages in controlling the production environment for Atlantic salmon (Salmo salar) aquaculture, especially at sea, where fish are more exposed to challenging environmental conditions. Here, we report the health and welfare of Atlantic salmon in FishGLOBE V5, a 3500 m3 semi-closed containment system. A group of 200,000 post-smolts was followed from a recirculating aquaculture system (RAS) facility, then for three and a half months in FishGLOBE V5, and three months after release in net pens. Fish samples were collected at four time points during the production period, while water quality was evaluated when the fish were in FishGLOBE V5. The water quality in FishGLOBE V5 was within the recommended range for salmon post-smolts. The mortality rate was 1.4% in FishGLOBE V5 and 4.9% in net pens. There was an increase in the prevalence of eye, snout and dorsal fin damages before the fish left the FishGLOBE V5 phase. The plasma level of magnesium was slightly elevated during this phase as well, indicating osmotic imbalance and stress. Histological evaluation of skin and gills showed sporadic cases of non-specific pathologies. In particular, the transitory stay in FishGLOBE V5 partially improved skin health, but not gill health. Gene expression profiling of some biomarkers showed that rearing fish in FishGLOBE V5 could influence the expression of genes involved in stress response, mucus production, and epithelial integrity. This study documented that rearing salmon for a certain period in FishGLOBE V5 during production affected different health and welfare indicators. These changes should be taken into consideration for the improvement of FishGLOBE V5 as a viable technology for post-smolt production at sea.Health and welfare of Atlantic salmon in FishGLOBE V5 -a novel closed containment system at seapublishedVersio

    Discovery of microvascular miRNAs using public gene expression data: miR-145 is expressed in pericytes and is a regulator of Fli1

    Get PDF
    International audienceBACKGROUND: A function for the microRNA (miRNA) pathway in vascular development and angiogenesis has been firmly established. miRNAs with selective expression in the vasculature are attractive as possible targets in miRNA-based therapies. However, little is known about the expression of miRNAs in microvessels in vivo. Here, we identified candidate microvascular-selective miRNAs by screening public miRNA expression datasets. METHODS: Bioinformatics predictions of microvascular-selective expression were validated with real-time quantitative reverse transcription PCR on purified microvascular fragments from mouse. Pericyte expression was shown with in situ hybridization on tissue sections. Target sites were identified with 3' UTR luciferase assays, and migration was tested in a microfluid chemotaxis chamber. RESULTS: miR-145, miR-126, miR-24, and miR-23a were selectively expressed in microvascular fragments isolated from a range of tissues. In situ hybridization and analysis of Pdgfb retention motif mutant mice demonstrated predominant expression of miR-145 in pericytes. We identified the Ets transcription factor Friend leukemia virus integration 1 (Fli1) as a miR-145 target, and showed that elevated levels of miR-145 reduced migration of microvascular cells in response to growth factor gradients in vitro. CONCLUSIONS: miR-126, miR-24 and miR-23a are selectively expressed in microvascular endothelial cells in vivo, whereas miR-145 is expressed in pericytes. miR-145 targets the hematopoietic transcription factor Fli1 and blocks migration in response to growth factor gradients. Our findings have implications for vascular disease and provide necessary information for future drug design against miRNAs with selective expression in the microvasculature

    AUF1 p42 isoform selectively controls both steady-state and PGE2-induced FGF9 mRNA decay

    Get PDF
    Fibroblast growth factor 9 (FGF9) is an autocrine/paracrine growth factor that plays vital roles in many physiologic processes including embryonic development. Aberrant expression of FGF9 causes human diseases and thus it highlights the importance of controlling FGF9 expression; however, the mechanism responsible for regulation of FGF9 expression is largely unknown. Here, we show the crucial role of an AU-rich element (ARE) in FGF9 3′-untranslated region (UTR) on controlling FGF9 expression. Our data demonstrated that AUF1 binds to this ARE to regulate FGF9 mRNA stability. Overexpression of each isoform of AUF1 (p37, p40, p42 and p45) showed that only the p42 isoform reduced the steady-state FGF9 mRNA. Also, knockdown of p42AUF1 prolonged the half-life of FGF9 mRNA. The induction of FGF9 mRNA in prostaglandin (PG) E2-treated human endometrial stromal cells was accompanied with declined cytoplasmic AUF1. Nevertheless, ablation of AUF1 led to sustained elevation of FGF9 expression in these cells. Our study demonstrated that p42AUF1 regulates both steady-state and PGE2-induced FGF9 mRNA stability through ARE-mediated mRNA degradation. Since almost half of the FGF family members are ARE-containing genes, our findings also suggest that ARE-mediated mRNA decay is a common pathway to control FGFs expression, and it represents a novel RNA regulon to coordinate FGFs homeostasis in various physiological conditions

    Coordinate Activation of Activator Protein 1 and Inflammatory Cytokines in Response to Neisseria gonorrhoeae Epithelial Cell Contact Involves Stress Response Kinases

    Get PDF
    Neisseria gonorrhoeae (Ngo), the etiologic agent of gonorrhea, induce a number of proinflammatory cytokines by contact to epithelial cells. Cytokine genes and a variety of other immune response genes are activated as a result of the regulatory function of immediate early response transcription factors including activator protein 1 (AP-1). Since it is established that phosphorylation of c-Jun, the central component of AP-1, by the stress-activated c-Jun NH2-terminal kinase (JNK) increases the transcriptional activity of AP-1, we studied whether Ngo could induce stress response pathways involving JNK. We found that virulent Ngo strains induce phosphorylation and activation of JNK but not of p38 kinase. Analysis of a nonpathogenic Ngo strain revealed only weak JNK activation. In respect to the molecular components upstream of the JNK signaling cascade, we show that a dominant negative mutant of MAP kinase kinase 4 (MKK4) represses transcription of an AP-1–dependent reporter gene. Regarding upstream stress response factors involved in Ngo-induced MKK4/JNK/AP-1 activation, we identified p21-activated kinase (PAK) but not MAPK/ERK kinase kinase (MEKK1). Inhibition of small GTPases including Rac1 and Cdc42 by Toxin B prevented JNK and AP-1 activation. Our results indicate that Ngo induce the activation of proinflammatory cytokines via a cascade of cellular stress response kinases involving PAK, which directs the signal from the Rho family of small GTPases to JNK/AP-1 activation
    corecore