428 research outputs found
The NF-κB inhibitor IκBα negates colon cancer cell migration, invasion, proliferation and tumor growth
Trefoil peptides as proangiogenic factors in vivo and in vitro: implication of cyclooxygenase-2 and EGF receptor signaling
Spectrum of cellular responses to pyriplatin, a monofunctional cationic antineoplastic platinum(II) compound, in human cancer cells
Pyriplatin, cis-diammine(pyridine)chloroplatinum(II), a platinum-based antitumor drug candidate, is a cationic compound with anticancer properties in mice and is a substrate for organic cation transporters that facilitate oxaliplatin uptake. Unlike cisplatin and oxaliplatin, which form DNA cross-links, pyriplatin binds DNA in a monofunctional manner. The antiproliferative effects of pyriplatin, alone and in combination with known anticancer drugs (paclitaxel, gemcitabine, SN38, cisplatin, and 5-fluorouracil), were evaluated in a panel of epithelial cancer cell lines, with direct comparison to cisplatin and oxaliplatin. The effects of pyriplatin on gene expression and platinum–DNA adduct formation were also investigated. Pyriplatin exhibited cytotoxic effects against human cell lines after 24 hours (IC[subscript 50] = 171–443 μmol/L), with maximum cytotoxicity in HOP-62 non–small cell lung cancer cells after 72 hours (IC[subscript 50] = 24 μmol/L). Pyriplatin caused a G[subscript 2]-M cell cycle block similar to that induced by cisplatin and oxaliplatin. Induction of apoptotsis and DNA damage response was supported by Annexin-V analysis and detection of phosphorylated Chk2 and H2AX. Treatment with pyriplatin increased CDKN1/p21 and decreased ERCC1 mRNA expression. On a platinum-per-nucleotide basis, pyriplatin–DNA adducts are less cytotoxic than those of cisplatin and oxaliplatin. The mRNA levels of genes implicated in drug transport and DNA damage repair, including GSTP1 and MSH2, correlate with pyriplatin cellular activity in the panel of cell lines. Synergy occurred for combinations of pyriplatin with paclitaxel. Because its spectrum of activity differs significantly from those of cisplatin or oxaliplatin, pyriplatin is a lead compound for developing novel drug candidates with cytotoxicity profiles unlike those of drugs currently in use
Progression of familial adenomatous polyposis (FAP) colonic cells after transfer of the src or polyoma middle T oncogenes: cooperation between src and HGF/Met in invasion.
Little is known about the the signalling pathways driving the adenoma-to-carcinoma sequence in human colonic epithelial cells. Accumulation and activation of the src tyrosine kinase in colon cancer suggest a potential role of this oncogene in this early progression. Therefore, we introduced either activated src (m-src), polyoma-MT alone or combined with normal c-src in the adenoma PC/AA/C1 cell line (PC) to define the function and phenotypic transformations induced by these oncogenes in familial adenomatous polyposis (FAP) colonic epithelial cells. Functional expression of these oncoproteins induced the adenoma-to-carcinoma conversion, overexpression of the hepatocyte growth factor (HGF) receptor Met, but failed to confer invasiveness in vivo and in vitro, or to produce alterations in cell proliferation and differentiation. In contrast, PC-msrc cells became susceptible to the HGF-induced invasion of collagen gels and exhibited sustained activation of the pp60src tyrosine kinase and Tyr phosphorylation of the 120-kDa E-cadherin, which was further increased by HGF Transcripts of HGF were clearly identified by reverse transcription-polymerase chain reaction (RT-PCR) and Southern blot in the parental and transformed PC cells, suggesting an autocrine mechanism. Taken together, the data indicate that: (1) experimental activation of src and PyMT pathways directly induces tumorigenicity and Met upregulation in a colon adenoma cell line; (2) HGF-activated Met and src cooperate in inducing invasion; (3) in view of the molecular associations between catenins and cadherin or the tumour-suppressor gene product APC, the cell adhesion molecule E-cadherin may constitute a downstream effector of src and Met
Processing and characterization of the low density lipoprotein receptor in the human colonic carcinoma cell subclone HT29-18:a potential pathway for delivering therapeutic drugs and genes
Processing and characterization of the low density lipoprotein receptor in the human colonic carcinoma cell subclone HT29-18:a potential pathway for delivering therapeutic drugs and genes
The Neurotensin Receptor-1 Pathway Contributes to Human Ductal Breast Cancer Progression
BACKGROUND: The neurotensin (NTS) and its specific high affinity G protein coupled receptor, the NT1 receptor (NTSR1), are considered to be a good candidate for one of the factors implicated in neoplastic progression. In breast cancer cells, functionally expressed NT1 receptor coordinates a series of transforming functions including cellular migration and invasion. METHODS AND RESULTS: we investigated the expression of NTS and NTSR1 in normal human breast tissue and in invasive ductal breast carcinomas (IDCs) by immunohistochemistry and RT-PCR. NTS is expressed and up-regulated by estrogen in normal epithelial breast cells. NTS is also found expressed in the ductal and invasive components of IDCs. The high expression of NTSR1 is associated with the SBR grade, the size of the tumor, and the number of metastatic lymph nodes. Furthermore, the NTSR1 high expression is an independent factor of prognosis associated with the death of patients. CONCLUSION: these data support the activation of neurotensinergic deleterious pathways in breast cancer progression
MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity
Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility. © 2021, The Author(s)
- …
