7,569 research outputs found

    On the almost sure central limit theorem for ARX processes in adaptive tracking

    Full text link
    The goal of this paper is to highlight the almost sure central limit theorem for martingales to the control community and to show the usefulness of this result for the system identification of controllable ARX(p,q) process in adaptive tracking. We also provide strongly consistent estimators of the even moments of the driven noise of a controllable ARX(p,q) process as well as quadratic strong laws for the average costs and estimation errors sequences. Our theoretical results are illustrated by numerical experiments

    Sequential Detection with Mutual Information Stopping Cost

    Full text link
    This paper formulates and solves a sequential detection problem that involves the mutual information (stochastic observability) of a Gaussian process observed in noise with missing measurements. The main result is that the optimal decision is characterized by a monotone policy on the partially ordered set of positive definite covariance matrices. This monotone structure implies that numerically efficient algorithms can be designed to estimate and implement monotone parametrized decision policies.The sequential detection problem is motivated by applications in radar scheduling where the aim is to maintain the mutual information of all targets within a specified bound. We illustrate the problem formulation and performance of monotone parametrized policies via numerical examples in fly-by and persistent-surveillance applications involving a GMTI (Ground Moving Target Indicator) radar
    corecore