324 research outputs found
Geometric signature of reversal modes in ferromagnetic nanowires
Magnetic nanowires are a good platform to study fundamental processes in
Magnetism and have many attractive applications in recording such as
perpendicular storage and in spintronics such as non-volatile magnetic memory
devices (MRAM) and magnetic logic devices. In this work, nanowires are used to
study magnetization reversal processes through a novel geometric approach.
Reversal modes imprint a definite signature on a parametric curve representing
the locus of the critical switching field. We show how the different modes
affect the geometry of this curve depending on the nature of the anisotropy
(uniaxial or cubic anisotropy), demagnetization and exchange effects. The
samples we use are electrochemically grown Nickel and Cobalt nanowires.Comment: 11 pages, 21 figures to submit to Europhysics Letter
Adolescent Health Literacy: The Importance of Credible Sources for Online Health Information
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89464/1/j.1746-1561.2011.00664.x.pd
Orthogonal variability modeling to support multi-cloud application configuration
Cloud service providers benefit from a vast majority of customers due to variability and making profit from commonalities between the cloud services that they provide. Recently, application configuration dimensions has been increased dramatically due to multi-tenant, multi-device and multi-cloud paradigm. This challenges the configuration and customization of cloud-based software that are typically offered as a service due to the intrinsic variability. In this paper, we present a model-driven approach based on variability models originating from the software product line community to handle such multi-dimensional variability in the cloud. We exploit orthogonal variability models to systematically manage and create tenant-specific configuration and customizations. We also demonstrate how such variability models can be utilized to take into account the already deployed application parts to enable harmonized deployments for new tenants in a multi-cloud setting. The approach considers application functional and non-functional requirements to provide a set of valid multi-cloud configurations. We illustrate our approach through a case study
Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions
This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14??C (to represent March/April), 25??C (May/June), 29??C (July/August), and 23??C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5??C and 32.2 to 33.4??C in Tscapular. The range of Tinnermost was 28.6 to 32.0??C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl and Mtotal, but Llower did not. Subjects hardly changed Llower under environmental comfort conditions between March and October. This indicates that each of the Tchest, Mtotal, and Lupper was a factor in predicting Icl. Tinnermost might also be a more influential factor than the clothing microclimate temperature.open1
Power transmission network expansion planning: A semidefinite programming branch-and-bound approach
Transmission network expansion planning is a mixed-integer optimization problem, whose solution is used to guide future investment in transmission equipment. An approach is presented to find the global optimal solution of the transmission planning problem using an AC network model. The approach builds on the semidefinite relaxation of the AC optimal power flow problem (ACOPF); its computational engine is a specialized branch-and-bound algorithm for transmission expansion planning to deal with the underlying mixed-integer ACOPF problem. Valid inequalities that are based on specific knowledge of the expansion problem are employed to improve the solution quality at any node of the search tree, and thus significantly reduce the overall computational effort of the branch-and-bound algorithm. Additionally, sparsity of the semidefinite relaxation is exploited to further reduce the computation time at each node of the branch-and-bound tree. Despite the vast number of publications on transmission expansion planning, the proposed approach is the first to provide expansion plans that are globally optimal using a solution approach for the mixed-integer ACOPF problem. The results on standard networks serve as important benchmarks to assess the solution quality from existing techniques and simplified models. © 2018 Elsevier B.V
Phenotype bias determines how natural RNA structures occupy the morphospace of all possible shapes
The relative prominence of developmental bias versus natural selection is a long standing controversy in evolutionary biology. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. By using the RNAshapes method to define coarse-grained SS classes, we can measure the frequencies that non-coding RNA SS shapes appear in nature. Our main findings are firstly that only the most frequent structures appear in nature; the vast majority of possible structures in the morphospace have not yet been explored. Secondly, and perhaps more surprisingly, these frequencies are accurately predicted by the likelihood that structures appear upon uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather strong phenotype bias in the RNA genotype-phenotype (GP) map, a type of developmental bias which tightly constrains evolutionary dynamics to only act within a reduced subset of structures that are easy to “find”.
Preprint on:
https://www.biorxiv.org/content/10.1101/2020.12.03.410605v
Novel poly-pyridyl ruthenium complexes with bis- and tris-tetrazolate mono-dentate ligands for dye sensitized solar cells
We report on a new family of ruthenium poly-pyridyl complexes that bears bis- and tris-tetrazolate mono-dentate ligands along with their spectroscopical, electrochemical, and theoretical characterization. Dye-sensitized solar cells with these complexes show good conversion efficiencies with comparable open circuit voltages to that of N719 without the use of any additives, due to their retarded electron-recombination processes. © 2014 The Partner Organisations
Photoinduced energy- and electron-transfer from a photoactive coordination cage to bound guests.
In a coordination cage which contains an array of twelve naphthyl chromophores surrounding a central cavity, photoinduced energy or electron-transfer can occur from the chromophore array to the bound guest in supramolecular host/guest complexes
- …
