7,034 research outputs found
Scheduling Storms and Streams in the Cloud
Motivated by emerging big streaming data processing paradigms (e.g., Twitter
Storm, Streaming MapReduce), we investigate the problem of scheduling graphs
over a large cluster of servers. Each graph is a job, where nodes represent
compute tasks and edges indicate data-flows between these compute tasks. Jobs
(graphs) arrive randomly over time, and upon completion, leave the system. When
a job arrives, the scheduler needs to partition the graph and distribute it
over the servers to satisfy load balancing and cost considerations.
Specifically, neighboring compute tasks in the graph that are mapped to
different servers incur load on the network; thus a mapping of the jobs among
the servers incurs a cost that is proportional to the number of "broken edges".
We propose a low complexity randomized scheduling algorithm that, without
service preemptions, stabilizes the system with graph arrivals/departures; more
importantly, it allows a smooth trade-off between minimizing average
partitioning cost and average queue lengths. Interestingly, to avoid service
preemptions, our approach does not rely on a Gibbs sampler; instead, we show
that the corresponding limiting invariant measure has an interpretation
stemming from a loss system.Comment: 14 page
Queue-Based Random-Access Algorithms: Fluid Limits and Stability Issues
We use fluid limits to explore the (in)stability properties of wireless
networks with queue-based random-access algorithms. Queue-based random-access
schemes are simple and inherently distributed in nature, yet provide the
capability to match the optimal throughput performance of centralized
scheduling mechanisms in a wide range of scenarios. Unfortunately, the type of
activation rules for which throughput optimality has been established, may
result in excessive queue lengths and delays. The use of more
aggressive/persistent access schemes can improve the delay performance, but
does not offer any universal maximum-stability guarantees. In order to gain
qualitative insight and investigate the (in)stability properties of more
aggressive/persistent activation rules, we examine fluid limits where the
dynamics are scaled in space and time. In some situations, the fluid limits
have smooth deterministic features and maximum stability is maintained, while
in other scenarios they exhibit random oscillatory characteristics, giving rise
to major technical challenges. In the latter regime, more aggressive access
schemes continue to provide maximum stability in some networks, but may cause
instability in others. Simulation experiments are conducted to illustrate and
validate the analytical results
- …
