10,626 research outputs found
On a periodic solution of the central differential equation in the relativity theory of gravitation
Periodic solution of central differential equation in relativity theory of gravitatio
An Improved Distributed Algorithm for Maximal Independent Set
The Maximal Independent Set (MIS) problem is one of the basics in the study
of locality in distributed graph algorithms. This paper presents an extremely
simple randomized algorithm providing a near-optimal local complexity for this
problem, which incidentally, when combined with some recent techniques, also
leads to a near-optimal global complexity.
Classical algorithms of Luby [STOC'85] and Alon, Babai and Itai [JALG'86]
provide the global complexity guarantee that, with high probability, all nodes
terminate after rounds. In contrast, our initial focus is on the
local complexity, and our main contribution is to provide a very simple
algorithm guaranteeing that each particular node terminates after rounds, with probability at least
. The guarantee holds even if the randomness outside -hops
neighborhood of is determined adversarially. This degree-dependency is
optimal, due to a lower bound of Kuhn, Moscibroda, and Wattenhofer [PODC'04].
Interestingly, this local complexity smoothly transitions to a global
complexity: by adding techniques of Barenboim, Elkin, Pettie, and Schneider
[FOCS'12, arXiv: 1202.1983v3], we get a randomized MIS algorithm with a high
probability global complexity of ,
where denotes the maximum degree. This improves over the result of Barenboim et al., and gets close
to the lower bound of Kuhn et al.
Corollaries include improved algorithms for MIS in graphs of upper-bounded
arboricity, or lower-bounded girth, for Ruling Sets, for MIS in the Local
Computation Algorithms (LCA) model, and a faster distributed algorithm for the
Lov\'asz Local Lemma
Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding
We study coding schemes for error correction in interactive communications.
Such interactive coding schemes simulate any -round interactive protocol
using rounds over an adversarial channel that corrupts up to
transmissions. Important performance measures for a coding scheme are its
maximum tolerable error rate , communication complexity , and
computational complexity.
We give the first coding scheme for the standard setting which performs
optimally in all three measures: Our randomized non-adaptive coding scheme has
a near-linear computational complexity and tolerates any error rate with a linear communication complexity. This improves over
prior results which each performed well in two of these measures.
We also give results for other settings of interest, namely, the first
computationally and communication efficient schemes that tolerate adaptively, if only one party is required to
decode, and if list decoding is allowed. These are the
optimal tolerable error rates for the respective settings. These coding schemes
also have near linear computational and communication complexity.
These results are obtained via two techniques: We give a general black-box
reduction which reduces unique decoding, in various settings, to list decoding.
We also show how to boost the computational and communication efficiency of any
list decoder to become near linear.Comment: preliminary versio
- …
