10,626 research outputs found

    On a periodic solution of the central differential equation in the relativity theory of gravitation

    Get PDF
    Periodic solution of central differential equation in relativity theory of gravitatio

    An Improved Distributed Algorithm for Maximal Independent Set

    Full text link
    The Maximal Independent Set (MIS) problem is one of the basics in the study of locality in distributed graph algorithms. This paper presents an extremely simple randomized algorithm providing a near-optimal local complexity for this problem, which incidentally, when combined with some recent techniques, also leads to a near-optimal global complexity. Classical algorithms of Luby [STOC'85] and Alon, Babai and Itai [JALG'86] provide the global complexity guarantee that, with high probability, all nodes terminate after O(logn)O(\log n) rounds. In contrast, our initial focus is on the local complexity, and our main contribution is to provide a very simple algorithm guaranteeing that each particular node vv terminates after O(logdeg(v)+log1/ϵ)O(\log \mathsf{deg}(v)+\log 1/\epsilon) rounds, with probability at least 1ϵ1-\epsilon. The guarantee holds even if the randomness outside 22-hops neighborhood of vv is determined adversarially. This degree-dependency is optimal, due to a lower bound of Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Interestingly, this local complexity smoothly transitions to a global complexity: by adding techniques of Barenboim, Elkin, Pettie, and Schneider [FOCS'12, arXiv: 1202.1983v3], we get a randomized MIS algorithm with a high probability global complexity of O(logΔ)+2O(loglogn)O(\log \Delta) + 2^{O(\sqrt{\log \log n})}, where Δ\Delta denotes the maximum degree. This improves over the O(log2Δ)+2O(loglogn)O(\log^2 \Delta) + 2^{O(\sqrt{\log \log n})} result of Barenboim et al., and gets close to the Ω(min{logΔ,logn})\Omega(\min\{\log \Delta, \sqrt{\log n}\}) lower bound of Kuhn et al. Corollaries include improved algorithms for MIS in graphs of upper-bounded arboricity, or lower-bounded girth, for Ruling Sets, for MIS in the Local Computation Algorithms (LCA) model, and a faster distributed algorithm for the Lov\'asz Local Lemma

    Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding

    Full text link
    We study coding schemes for error correction in interactive communications. Such interactive coding schemes simulate any nn-round interactive protocol using NN rounds over an adversarial channel that corrupts up to ρN\rho N transmissions. Important performance measures for a coding scheme are its maximum tolerable error rate ρ\rho, communication complexity NN, and computational complexity. We give the first coding scheme for the standard setting which performs optimally in all three measures: Our randomized non-adaptive coding scheme has a near-linear computational complexity and tolerates any error rate δ<1/4\delta < 1/4 with a linear N=Θ(n)N = \Theta(n) communication complexity. This improves over prior results which each performed well in two of these measures. We also give results for other settings of interest, namely, the first computationally and communication efficient schemes that tolerate ρ<27\rho < \frac{2}{7} adaptively, ρ<13\rho < \frac{1}{3} if only one party is required to decode, and ρ<12\rho < \frac{1}{2} if list decoding is allowed. These are the optimal tolerable error rates for the respective settings. These coding schemes also have near linear computational and communication complexity. These results are obtained via two techniques: We give a general black-box reduction which reduces unique decoding, in various settings, to list decoding. We also show how to boost the computational and communication efficiency of any list decoder to become near linear.Comment: preliminary versio
    corecore