1,985 research outputs found
The extended uncertainty principle inspires the R\'{e}nyi entropy
We use the extended uncertainty principle (EUP) in order to obtain the
R\'{e}nyi entropy for a black hole (BH). The result implies that the
non-extensivity parameter, appeared in the R\'{e}nyi entropy formalism, may be
evaluated from the considerations which lead to EUP. It is also shown that, for
excited BHs, the R\'{e}nyi entropy is a function of the BH principal quantum
number, i.e. the BH quantum excited state. Temperature and heat capacity of the
excited BHs are also investigated addressing two phases while only one of them
can be stable. At this situation, whereas entropy is vanished, temperature may
take a non-zero positive minimum value, depending on the value of the
non-extensivity parameter. The evaporation time of excited BH has also been
studied
An investigation of aerodynamic characteristics of wings having vortex flow using different numerical codes
Three different numerical codes are employed to determine the aerodynamic characteristics of wings with separation induced vortex flows. Both flat as well as cambered wings of various planform shapes are studied. The effects of wing thickness, fuselage, notch ratio and multiple vortex modeling on aerodynamic performance of the wing are also examined. The theoretically predicted results are compared with experimental results to validate the various computer codes used in this study. An analytical procedure for designing aerodynamically effective leading edge extension (LEE) for a thick delta wing is also presented
Generalized second law of thermodynamics in modified FRW cosmology with corrected entropy-area relation
Using the corrected entropy-area relation motivated by the loop quantum
gravity, we investigate the validity of the generalized second law of
thermodynamics in the framework of modified FRW cosmology. We consider a
non-flat universe filled with an interacting viscous dark energy with dark
matter and radiation. The boundary of the universe is assumed to be the
dynamical apparent horizon. We find out that the generalized second law is
always satisfied throughout the history of the universe for any spatial
curvature regardless of the dark energy model.Comment: 9 pages, accepted for publication in Europhysics Letter
An analytical design procedure for the determination of effective leading edge extensions on thick delta wings
An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape
Thermodynamics of apparent horizon in modified FRW universe with power-law corrected entropy
We derive the modified Friedmann equation corresponding to the power-law
corrected entropy-area relation which is motivated by the entanglement of quantum
fields in and out of the apparent horizon. We consider a non-flat modified FRW
universe containing an interacting viscous dark energy with dark matter and
radiation. For the selected model, we study the effect of the power-law
correction term to the entropy on the dynamics of dark energy. Furthermore, we
investigate the validity of the generalized second law (GSL) of gravitational
thermodynamics on the apparent horizon and conclude that the GSL is satisfied
for .Comment: 12 pages, Accepted for Publication in JHE
- …
