594 research outputs found
Fusion of Heterogeneous Earth Observation Data for the Classification of Local Climate Zones
This paper proposes a novel framework for fusing multi-temporal,
multispectral satellite images and OpenStreetMap (OSM) data for the
classification of local climate zones (LCZs). Feature stacking is the most
commonly-used method of data fusion but does not consider the heterogeneity of
multimodal optical images and OSM data, which becomes its main drawback. The
proposed framework processes two data sources separately and then combines them
at the model level through two fusion models (the landuse fusion model and
building fusion model), which aim to fuse optical images with landuse and
buildings layers of OSM data, respectively. In addition, a new approach to
detecting building incompleteness of OSM data is proposed. The proposed
framework was trained and tested using data from the 2017 IEEE GRSS Data Fusion
Contest, and further validated on one additional test set containing test
samples which are manually labeled in Munich and New York. Experimental results
have indicated that compared to the feature stacking-based baseline framework
the proposed framework is effective in fusing optical images with OSM data for
the classification of LCZs with high generalization capability on a large
scale. The classification accuracy of the proposed framework outperforms the
baseline framework by more than 6% and 2%, while testing on the test set of
2017 IEEE GRSS Data Fusion Contest and the additional test set, respectively.
In addition, the proposed framework is less sensitive to spectral diversities
of optical satellite images and thus achieves more stable classification
performance than state-of-the art frameworks.Comment: accepted by TGR
Feature Selection Based on Hybridization of Genetic Algorithm and Particle Swarm Optimization
A new feature selection approach that is based on the integration of a genetic algorithm and particle swarm optimization is proposed. The overall accuracy of a support vector machine classifier on validation samples is used as a fitness value. The new approach is carried out on the well-known Indian Pines hyperspectral data set. Results confirm that the new approach is able to automatically select the most informative features in terms of classification accuracy within an acceptable CPU processing time without requiring the number of desired features to be set a priori by users. Furthermore, the usefulness of the proposed method is also tested for road detection. Results confirm that the proposed method is capable of discriminating between road and background pixels and performs better than the other approaches used for comparison in terms of performance metrics.Rannís; Rannsóknarnámssjóður / The Icelandic Research Fund for
Graduate Students.PostPrin
Spectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields
Hyperspectral remote sensing technology allows one to acquire a sequence of possibly hundreds of contiguous spectral images from ultraviolet to infrared. Conventional spectral classifiers treat hyperspectral images as a list of spectral measurements and do not consider spatial dependences, which leads to a dramatic decrease in classification accuracies. In this paper, a new automatic framework for the classification of hyperspectral images is proposed. The new method is based on combining hidden Markov random field segmentation with support vector machine (SVM) classifier. In order to preserve edges in the final classification map, a gradient step is taken into account. Experiments confirm that the new spectral and spatial classification approach is able to improve results significantly in terms of classification accuracies compared to the standard SVM method and also outperforms other studied methods.Ritrýnt tímaritPeer reviewe
A Novel Feature Selection Approach Based on FODPSO and SVM
A novel feature selection approach is proposed to address the curse of dimensionality and reduce the redundancy of hyperspectral data. The proposed approach is based on a new binary optimization method inspired by fractional-order Darwinian particle swarm optimization (FODPSO). The overall accuracy (OA) of a support vector machine (SVM) classifier on validation samples is used as fitness values in order to evaluate the informativity of different groups of bands. In order to show the capability of the proposed method, two different applications are considered. In the first application, the proposed feature selection approach is directly carried out on the input hyperspectral data. The most informative bands selected from this step are classified by the SVM. In the second application, the main shortcoming of using attribute profiles (APs) for spectral-spatial classification is addressed. In this case, a stacked vector of the input data and an AP with all widely used attributes are created. Then, the proposed feature selection approach automatically chooses the most informative features from the stacked vector. Experimental results successfully confirm that the proposed feature selection technique works better in terms of classification accuracies and CPU processing time than other studied methods without requiring the number of desired features to be set a priori by users.IEEE Geoscience and Remote Sensing SocietyRitrýnt tímaritPeer Reviewe
Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis
The availability of diverse data captured over the same region makes it possible to develop multisensor data fusion techniques to further improve the discrimination ability of classifiers. In this paper, a new sparse and low-rank technique is proposed for the fusion of hyperspectral and light detection and ranging (LiDAR)-derived features. The proposed fusion technique consists of two main steps. First, extinction profiles are used to extract spatial and elevation information from hyperspectral and LiDAR data, respectively. Then, the sparse and low-rank technique is utilized to estimate the low-rank fused features from the extracted ones that are eventually used to produce a final classification map. The proposed approach is evaluated over an urban data set captured over Houston, USA, and a rural one captured over Trento, Italy. Experimental results confirm that the proposed fusion technique outperforms the other techniques used in the experiments based on the classification accuracies obtained by random forest and support vector machine classifiers. Moreover, the proposed approach can effectively classify joint LiDAR and hyperspectral data in an ill-posed situation when only a limited number of training samples are available
A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery
In land cover assessment, classes often gradually change from one to another. Therefore, it is difficult to allocate sharp boundaries between different classes of interest. To overcome this issue and model such conditions, fuzzy techniques that resemble human reasoning have been proposed as alternatives. Fuzzy C-means is the most common fuzzy clustering technique, but its concept is based on a local search mechanism and its convergence rate is rather slow, especially considering high-dimensional problems (e.g., in processing of hyperspectral images). Here, in order to address those shortcomings of hard approaches, a new approach is proposed, i.e., fuzzy C-means which is optimized by fractional order Darwinian particle swarm optimization. In addition, to speed up the clustering process, the histogram of image intensities is used during the clustering process instead of the raw image data. Furthermore, the proposed clustering approach is combined with support vector machine classification to accurately classify hyperspectral images. The new classification framework is applied on two well-known hyperspectral data sets; Indian Pines and Salinas. Experimental results confirm that the proposed swarm-based clustering approach can group hyperspectral images accurately in a time-efficient manner compared to other existing clustering techniques.PostPrin
- …
