18 research outputs found
Genipin-Aided Protein Cross-linking to Modify Structural and Rheological Properties of Emulsion-Filled Hempseed Protein Hydrogels
Calcitonin-loaded octamaleimic acid–silsesquioxane nanoparticles in hydrogel scaffold support osteoinductivity in bone regeneration
A Fourier transform infrared spectroscopy‐based method for tracking diffusion in organogels
Organogels possess characteristics that make them promising materials for enhancing our understanding of nanostructure‐diffusion relationships in gels and for use in diffusion‐centered applications including drug delivery and nanoreactor media. Unlike hydrogels, however, there are no well‐recognized techniques for measuring the fundamental diffusion parameter of diffusivity, D , in organogels. The present work establishes a technique for measuring D based upon Fourier‐transform infrared spectroscopy. Physically crosslinked gels composed of poly[styrene‐b ‐(ethylene‐butylene)‐b ‐styrene] and aliphatic mineral oil are used to showcase the new technique\u27s capability. Diffusivity of unimers—oleic acid—and reverse micelles—sodium dioctyl sulfosuccinate (AOT)—within as‐prepared and preswollen gels is quantified and resultant values are commensurate with studies of unimer and micelle diffusion in hydrogels. The case of AOT diffusion is further validated through small‐angle X‐ray scattering analysis, which is in close agreement (\u3c20% difference)
How COVID-19 Lockdown in Italy Has Affected Type of Calls and Management of Toxic Exposures: a Retrospective Analysis of a Poison Control Center Database From March 2020 to May 2020
Biocompatible Delivery System for Metformin: Characterization, Radiolabeling and In Vitro Studies
Hybrid meta-heuristic algorithms for a supply chain network considering different carbon emission regulations using big data characteristics
Big data (BD) approach has significantly impacted on the development and expansion of supply chain network management and design. The available problems in the supply chain network (SCN) include production, distribution, transportation, ordering, and inventory holding problems. These problems under the BD environment are challenging and considerably affect the efficiency of the SCN. The drastic environmental and regulatory changes around the world and the rising concerns about carbon emissions have increased the awareness of customers regarding the carbon footprint of the products they are consuming. This has enforced supply chain managers to change strategies to reframe carbon emissions. The decisions such as an optimization of the suitable network of the proper lot sizes can play a crucial role in minimizing the whole carbon emissions in the SCN. In this paper, a new integrated production–transportation–ordering–inventory holding problem for SCN is developed. In this regard, a mixed-integer nonlinear programming (MINLP) model in the multi-product, multi-level, and multi-period SCN is formulated based on the minimization of the total costs and the related cost of carbon emissions. The research also uses a chance-constrained programming approach. The proposed model needs a range of real-time parameters from capacities, carbon caps, and costs. These parameters along with the various sizes of BD, namely velocity, variety, and volume, have been illustrated. A lot-sizing policy along with carbon emissions is also provided in the proposed model. One of the important contributions of this paper is the three various carbon regulation policies that include carbon capacity-and-trade, the strict capacity on emission, and the carbon tax on emissions in order to assess the carbon emissions. As there is no benchmark available in the literature, this study contributes toward this aspect by proposing two hybrid novel meta-heuristics (H-1) and (H-2) to optimize the large-scale problems with the complex structure containing BD. Hence, a generated random dataset possessing the necessary parameters of BD, namely velocity, variety, and volume, is provided to validate and solve the suggested model. The parameters of the proposed algorithms are calibrated and controlled using the Taguchi approach. In order to evaluate hybrid algorithms and find optimal solutions, the study uses 15 randomly generated data examples having necessary features of BD and T test significance. Finally, the effectiveness and performance of the presented model are analyzed by a set of sensitivity analyses. The outcome of our study shows that H-2 is of higher efficiency
