759 research outputs found
‘Multi-directional management’: Exploring the challenges of performance in the World Class Programme environment
Driven by the ever-increasing intensity of Olympic competition and the ‘no compromise – no stone unturned’ requirements frequently addressed by HM Government and its main agency, UK Sport, a change in culture across Olympic team landscapes is a common occurrence. With a focus on process, this paper presents reflections from eight current or recently serving UK Olympic sport Performance Directors on their experiences of creating and disseminating their vision for their sport, a vital initial activity of the change initiative. To facilitate a broad overview of this construct, reflections are structured around the vision’s characteristics and foundations, how it is delivered to key stakeholder groups, how it is influenced by these groups, the qualities required to ensure its longevity and its limitations. Emerging from these perceptions, the creation and maintenance of a shared team vision was portrayed as a highly dynamic task requiring the active management of a number of key internal and external stakeholders. Furthermore, the application of ‘dark’ traits and context-specific expertise were considered critical attributes for the activity’s success. Finally, recent calls for research to elucidate the wider culture optimisation process are reinforced
Preliminary Results of an International Study Exploring and Comparing Positive Aspects and Concerns of Growing Older in Different Societies
This paper aims to gain an understanding and insight into the older person’s experiences and perceptions of growing older within their own societies in relation to their independence, choice and decision making. In an attempt to identify what is happening in different countries and cultures and to share these experiences, attitudes and perceptions from older people, this study asked people from three developing countries (Tanzania, Indonesia and Peru), from three different continents, to take part in this study
Enhancing skills of critical reflection to evidence learning in professional practice
Professional organisations and regulatory bodies are making critical reflection a mandatory component of professional practice. Reflection is a vital part of learning from experience and is central to developing and maintaining competency across a practitioner's lifetime. This paper will discuss key educational theories to illustrate why reflection is important. Kolb's and Gibbs' reflective cycles are used to structure the process of critical reflection. Elements of the educational tradition of Bildung are discussed and integrated to enrich the understanding of self and to facilitate the reader's ability to enhance their professional practice
Reflective Journaling: A Theoretical Model and Digital Prototype for Developing Resilience and Creativity
Reflection is commonly discussed as a tool for personal and professional development that is becoming increasingly important in today’s global and digital world. In this paper, we propose a model that suggests ways in which reflection, in the form of Reflective Journaling, can support the development of creativity and resilience, which are needed to enable individuals to function effectively in a fast-changing environment. In addition, the model proposes ways in which external support and progress monitoring can be used in conjunction with skills in adaptive resilience and structured creativity, to support the maintenance of reflective journaling as a habit, in the longer term, thus creating virtuous cycles of skills and behaviours that can reinforce each other. Based on our model, and additional user research, we describe the design of a first digital prototype that aims to support the use of Reflective Journaling and to develop creativity and resilience through suggested mechanisms. Initial evaluations of our prototype are positive. It has been well-received by early test users, and has the potential to address all the connections defined. We therefore suggest that the theoretical model can be used to develop digital tools, such as the one included, to help those who wish to develop the habit of reflective journaling, and through that a range of other skills associated with resilience and creative thinking. We see this as a starting point for investigating this potential in more depth
Increased IL-6 and TGF-beta(1) concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy
peer reviewedaudience: researcherPURPOSE: To assess, in lung cancer patients, the effects of thoracic radiotherapy (RT) on the concentrations of transforming growth factor-beta(1) (TGF-beta(1)) and interleukin-6 (IL-6) in the bronchoalveolar lavage (BAL) fluid. METHODS AND MATERIALS: Eleven patients with lung cancer requiring RT as part of their treatment were studied. BAL was performed bilaterally before, during, and 1, 3, and 6 months after RT. Before each BAL session, the patient's status was assessed clinically using pulmonary function tests and an adapted late effects on normal tissue-subjective, objective, management, analytic (LENT-SOMA) scale, including subjective and objective alterations. The National Cancer Institute Common Toxicity Criteria were used to grade pneumonitis. The TGF-beta(1) and IL-6 levels in the BAL fluid were determined using the Easia kit. RESULTS: The TGF-beta(1) and IL-6 concentrations in the BAL fluid recovered from the irradiated areas were significantly increased by thoracic RT. The increase in TGF-beta(1) levels tended to be greater in the group of patients who developed severe pneumonitis. In the BAL fluid from the nonirradiated areas, the TGF-beta(1) and IL-6 concentrations remained unchanged. CONCLUSION: The observed increase in TGF-beta(1) and IL-6 concentrations in the BAL fluid recovered from the irradiated lung areas demonstrated that these cytokines may contribute to the process leading to a radiation response in human lung tissue
Novel Readings: The History of a Writing Community by a Partial, Prejudiced, & Ignorant Historian
Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions
Background:
Due to the chronic disease burden on society, there is a need for preventive public health interventions to stimulate society towards a healthier lifestyle. To deal with the complex variability between individual lifestyles and settings, collaborating with end-users to develop interventions tailored to their unique circumstances has been suggested as a potential way to improve effectiveness and adherence. Co-creation of public health interventions using participatory methodologies has shown promise but lacks a framework to make this process systematic. The aim of this paper was to identify and set key principles and recommendations for systematically applying participatory methodologies to co-create and evaluate public health interventions.
Methods:
These principles and recommendations were derived using an iterative reflection process, combining key learning from published literature in addition to critical reflection on three case studies conducted by research groups in three European institutions, all of whom have expertise in co-creating public health interventions using different participatory methodologies.
Results:
Key principles and recommendations for using participatory methodologies in public health intervention co-creation are presented for the stages of: Planning (framing the aim of the study and identifying the appropriate sampling strategy); Conducting (defining the procedure, in addition to manifesting ownership); Evaluating (the process and the effectiveness) and Reporting (providing guidelines to report the findings). Three scaling models are proposed to demonstrate how to scale locally developed interventions to a population level.
Conclusions:
These recommendations aim to facilitate public health intervention co-creation and evaluation utilising participatory methodologies by ensuring the process is systematic and reproducible
Image processing on reconfigurable hardware for continuous monitoring of fluorescent biomarkers in cell cultures
Fluorescence microscopy is a widespread tool in biological research. It is the primary modality for bioimaging and empowers the study and analysis of multitudes of biological processes. It can be applied to fixed biosamples, that is samples with frozen biological features by mean of chemical linkers, or live biosamples providing useful insights on the spatio-temporal behavior of fluorescently stained biomarkers. Current fluorescent microscopy techniques use digital image sensors which are used to leverage quantitative studies instead qualitative outcomes. However, state-of-the-art techniques are not suitable for integration in small, contained and (semi-)autonomous systems. They remain costly, bulky and rather quantitatively inefficient methods for monitoring fluorescent biomarkers, which is not on par with the design constraints found in modern Lab-on-a-Chip or Point-of-Use systems requiring the use of miniaturized and integrated fluroscence microscopy. In this thesis, I summarize my research and engineering efforts in bringing an embedded image processing system capable of monitoring fluorescent biomarkers in cell cultures in a continuous and real-time manner. Three main areas related to the problem at hand were explored in the course of this work: simulation, segmentation algorithms and embedded image processing. n the area of simulation, a novel approach for generating synthetic fluorescent 2D images of cell cultures is presented. This approach is dichotomized in a first part focusing on the modeling and generation of synthetic populations of cells (i.e. cell cultures) at the level of single fluorescent biomarkers and in a second part simulating the imaging process occurring in a traditional digital fluorescent microscope to produce realistic images of the synthetic cell cultures. The objective of the proposed approach aims at providing synthetic data at will in order to test and validate image processing systems and algorithms. Various image segmentation algorithms are considered and compared for the purpose of segmenting fluorescent spots in microscopic images. The study presented in this thesis includes a novel image thresholding technique for spot extraction along with three well-known spot segmentation techniques. The comparison is undertaken on two aspects. The segmentation masks provided by the methods are used to extract further metrics related to the fluorescent signals in order to (i) evaluate how well the segmentation masks can provide data for classifying real fluorescent biological samples from negative control samples and (ii) quantitatively compare the segmentations masks based on simulated data from the previously stated simulation tool. Finally, the design of an embedded image processing system based on FPGA technologies is showcased. A semi-autonomous smart camera is conceived for the continuous monitoring of fluorescent biomarkers based on one of the segmentation methods incorporated in the previously stated comparison. Keeping the focus on the need for integration in fluorescence microscopy, the image processing core at the heart of the smart camera results from the use of a novel image processing suite; a suite of IP cores developed under the constraints dictated by the bioimaging needs of fluorescence microscopy for use in FPGA and SoC technologies. As a proof of concept, the smart camera is applied to the monitoring of the kinetics of the uptake of fluorescent silica nano-particles in cell cultures
- …
