40 research outputs found
Major Congenital Metabolic Disorders in the First 12 years of Life in 79,100 Consecutively Born Children in Qazvin Province
ObjectiveDeficient enzyme activity may cause congenital metabolic defects. These defectsare inherited in an autosomal recessive, autosomal dominant, and X-linkedpatterns. This study was aimed at investigating the occurrence of metabolicdiseases in Qazvin Province.Materials & MethodsThis cross-sectional study was performed on 79,100 children aged 12 years orless between 2000 and 2010. Clinical manifestations, laboratory findings, and allother essential information were assessed to precisely diagnose the metabolicdiseases. The sorted information on congenital metabolic defects of the patients,information included in a checklist, and data were analyzed usnig SPSS.ResultsA total of 57 metabolic disorders were recorded. The difference in the prevalenceof metabolic disorders between male (29 cases) and female (28 cases) wasnot statistically significant. The most frequent congenital metabolic disorderamong our patients was phenylketonuria (PKU; 5 per 1,000 cases), and the leastcommon disorder was galactosemia (3 per 1,000 cases).ConclusionTimely detection and management of congenital metabolic disorders canhelp save the affected children. Prenatal screening programs, molecular genetherapy, and counseling for consanguineous marriage can play important rolesin reducing the rate of metabolic disorders in this province.Keywords: Congenital metabolic disorders; prevalence; population; Qazvin
Gaussian Process Modelling for Uncertainty Quantification in Convectively-Enhanced Dissolution Processes in Porous Media
Numerical groundwater flow and dissolution models of physico-chemical processes in deep aquifers are usually subject to uncertainty in one or more of the model input parameters. This uncertainty is propagated through the equations and needs to be quantified and characterised in order to rely on the model outputs. In this paper we present a Gaussian process emulation method as a tool for performing uncertainty quantification in mathematical models for convection and dissolution processes in porous media. One of the advantages of this method is its ability to significantly reduce the computational cost of an uncertainty analysis, while yielding accurate results, compared to classical Monte Carlo methods. We apply the methodology to a model of convectively-enhanced dissolution processes occurring during carbon capture and storage. In this model, the Gaussian process methodology fails due to the presence of multiple branches of solutions emanating from a bifurcation point, i.e., two equilibrium states exist rather than one. To overcome this issue we use a classifier as a precursor to the Gaussian process emulation, after which we are able to successfully perform a full uncertainty analysis in the vicinity of the bifurcation point
A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant
Abstract This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet "db4" functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter for the final state estimation. The recent data are recursively utilized to apply wavelet transform and extract the variance of the updated data, which makes it suitable to be applied to both static and dynamic systems corrupted by noisy environments. The method has suitable performance in state estimation in comparison with the other alternative algorithms. A three-tank benchmark system has been adopted to comparatively demonstrate the performance merits of the method compared to a known algorithm in terms of efficiently satisfying signal-tonoise (SNR) and minimum square error (MSE) criteria
Chemical control of dissolution-driven convection in partially miscible systems: theoretical classification
In-Situ, Solvent-Assisted Gravity Drainage of Bitumen: Nonlinear Numerical Analysis
Summary
The use of condensing solvents, especially propane vapor, has been proposed for the low-temperature recovery of bitumen by gravity drainage. A full numerical analysis of such a process is presented. A hybrid spectral/finite-difference method was implemented to solve equations simultaneously. The results show that the hydrodynamics of a miscible front was highly dependent on the characteristics of the porous medium and also on the properties of the miscible fluid. As a significant factor, the dependency of the production flow rate on the thickness of the porous medium was measured. The order of dependency was found to be a function of time and cannot be considered as a constant. Hydrodynamic dispersion was also found to decrease this dependency. More-detailed results, along with quantitative analyses, are also discussed to indicate how the hydrodynamics was influenced by other porous-medium characteristics and fluid properties, such as dissolution rate and molecular diffusion.</jats:p
Design of a new nonlinear model predictive fault tolerant control system using multi-sensor data fusion technique based on UKF algorithm
The effect of anisotropic dispersion on the convective mixing in long-term CO2 storage in saline aquifers
The impact of geochemistry on convective mixing in a gravitationally unstable diffusive boundary layer in porous media: CO<sub>2</sub> storage in saline aquifers
The storage of carbon dioxide and acid gases in deep geological formations is considered a promising option for mitigation of greenhouse gas emissions. An understanding of the primary mechanisms such as convective mixing and geochemistry that affect the long-term geostorage process in deep saline aquifers is of prime importance. First, a linear stability analysis of an unstable diffusive boundary layer in porous media is presented, where the instability occurs due to a density difference between the carbon dioxide saturated brine and the resident brine. The impact of geochemical reactions on the stability of the boundary layer is examined. The equations are linearised, and the obtained system of eigenvalue problems is solved numerically. The linear stability results have revealed that geochemistry stabilises the boundary layer as reaction consumes the dissolved carbon dioxide and makes the density profile, as the source of instability, more uniform. A detailed physical discussion is also presented with an examination of vorticity and concentration eigenfunctions and streamlines' contours to reveal how the geochemical reaction may affect the hydrodynamics of the process. We also investigate the effects of the Rayleigh number and the diffusion time on the stability of a boundary layer coupled with geochemical reactions. Nonlinear direct numerical simulations are also presented, in which the evolution of density-driven instabilities for different reaction rates is discussed. The development of instability is precisely studied for various scenarios. The results indicate that the boundary layer will be more stable for systems with a higher rate of reaction. However, our quantitative analyses show that more carbon dioxide may be removed from the supercritical free phase as the measured flux at the boundary is always higher for flow systems coupled with stronger geochemical reactions.</jats:p
