4,612 research outputs found
Disentangling Confused Stars at the Galactic Center with Long Baseline Infrared Interferometry
We present simulations of Keck Interferometer ASTRA and VLTI GRAVITY
observations of mock star fields in orbit within ~50 milliarcseconds of Sgr A*.
Dual-field phase referencing techniques, as implemented on ASTRA and planned
for GRAVITY, will provide the sensitivity to observe Sgr A* with infrared
interferometers. Our results show an improvement in the confusion noise limit
over current astrometric surveys, opening a window to study stellar sources in
the region. Since the Keck Interferometer has only a single baseline, the
improvement in the confusion limit depends on source position angles. The
GRAVITY instrument will yield a more compact and symmetric PSF, providing an
improvement in confusion noise which will not depend as strongly on position
angle. Our Keck results show the ability to characterize the star field as
containing zero, few, or many bright stellar sources. We are also able to
detect and track a source down to mK~18 through the least confused regions of
our field of view at a precision of ~200 microarcseconds along the baseline
direction. This level of precision improves with source brightness. Our GRAVITY
results show the potential to detect and track multiple sources in the field.
GRAVITY will perform ~10 microarcsecond astrometry on a mK=16.3 source and ~200
microarcsecond astrometry on a mK=18.8 source in six hours of monitoring a
crowded field. Monitoring the orbits of several stars will provide the ability
to distinguish between multiple post-Newtonian orbital effects, including those
due to an extended mass distribution around Sgr A* and to low-order General
Relativistic effects. Early characterizations of the field by ASTRA including
the possibility of a precise source detection, could provide valuable
information for future GRAVITY implementation and observation.Comment: Accepted for publication in Ap
A formal method for identifying distinct states of variability in time-varying sources: SgrA* as an example
Continuously time variable sources are often characterized by their power
spectral density and flux distribution. These quantities can undergo dramatic
changes over time if the underlying physical processes change. However, some
changes can be subtle and not distinguishable using standard statistical
approaches. Here, we report a methodology that aims to identify distinct but
similar states of time variability. We apply this method to the Galactic
supermassive black hole, where 2.2 um flux is observed from a source associated
with SgrA*, and where two distinct states have recently been suggested. Our
approach is taken from mathematical finance and works with conditional flux
density distributions that depend on the previous flux value. The discrete,
unobserved (hidden) state variable is modeled as a stochastic process and the
transition probabilities are inferred from the flux density time series. Using
the most comprehensive data set to date, in which all Keck and a majority of
the publicly available VLT data have been merged, we show that SgrA* is
sufficiently described by a single intrinsic state. However the observed flux
densities exhibit two states: a noise-dominated and a source-dominated one. Our
methodology reported here will prove extremely useful to assess the effects of
the putative gas cloud G2 that is on its way toward the black hole and might
create a new state of variability.Comment: Submitted to ApJ; 33 pages, 4 figures; comments welcom
A near-IR variability study of the Galactic black hole: a red noise source with no detected periodicity
We present the results of near-infrared (2 and 3 microns) monitoring of Sgr
A*-IR with 1 min time sampling using the natural and laser guide star adaptive
optics (LGS AO) system at the Keck II telescope. Sgr A*-IR was observed
continuously for up to three hours on each of seven nights, between 2005 July
and 2007 August. Sgr A*-IR is detected at all times and is continuously
variable, with a median observed 2 micron flux density of 0.192 mJy,
corresponding to 16.3 magnitude at K'. These observations allow us to
investigate Nyquist sampled periods ranging from about 2 minutes to an hour.
Using Monte Carlo simulations, we find that the variability of Sgr A* in this
data set is consistent with models based on correlated noise with power spectra
having frequency dependent power law slopes between 2.0 to 3.0, consistent with
those reported for AGN light curves. Of particular interest are periods of ~20
min, corresponding to a quasi-periodic signal claimed based upon previous
near-infrared observations and interpreted as the orbit of a 'hot spot' at or
near the last stable orbit of a spinning black hole. We find no significant
periodicity at any time scale probed in these new observations for periodic
signals. This study is sensitive to periodic signals with amplitudes greater
than 20% of the maximum amplitude of the underlying red noise component for
light curves with duration greater than ~2 hours at a 98% confidence limit.Comment: 37 pages, 2 tables, 17 figures, accepted by Ap
Submovements During Reaching Movements after Stroke
Neurological deficits after cerebrovascular accidents very frequently disrupt the kinematics of voluntary movements with the consequent impact in daily life activities. Robotic methodologies enable the quantitative characterization of specific control deficits needed to understand the basis of functional impairments and to design effective rehabilitation therapies. In a group of right handed chronic stroke survivors (SS) with right side hemiparesis, intact proprioception, and differing levels of motor impairment, we used a robotic manipulandum to study right arm function during discrete point-to-point reaching movements and reciprocal out-and-back movements to visual targets. We compared these movements with those of neurologically intact individuals (NI). We analyzed the presence of secondary submovements in the initial (i.e. outward) trajectory portion of the two tasks and found that the SS with severe impairment (F
Substellar multiplicity in the Hyades cluster
We present the first high-angular resolution survey for multiple systems
among very low-mass stars and brown dwarfs in the Hyades open cluster. Using
the Keck\,II adaptive optics system, we observed a complete sample of 16
objects with estimated masses 0.1 Msun. We have identified three
close binaries with projected separation 0.11", or 5 AU. A
number of wide, mostly faint candidate companions are also detected in our
images, most of which are revealed as unrelated background sources based on
astrometric and/or photometric considerations. The derived multiplicity
frequency, 19+13/-6 % over the 2-350 AU range, and the rarity of systems wider
than 10 AU are both consistent with observations of field very low-mass
objects. In the limited 3-50 AU separation range, the companion frequency is
essentially constant from brown dwarfs to solar-type stars in the Hyades
cluster, which is also in line with our current knowledge for field stars.
Combining the binaries discovered in this surveys with those already known in
the Pleiades cluster reveals that very low-mass binaries in open clusters, as
well as in star-forming regions, are skewed toward lower mass ratios () than are their field counterparts, a result that
cannot be accounted for by selection effects. Although the possibility of
severe systematic errors in model-based mass estimates for very low-mass stars
cannot be completely excluded, it is unlikely to explain this difference. We
speculate that this trend indicates that surveys among very low-mass field
stars may have missed a substantial population of intermediate mass ratio
systems, implying that these systems are more common and more diverse than
previously thought.Comment: Accepted for publication in Astronomy & Astrophysics; 11 pages, 6
figure
On the orientation of the Sagittarius A* system
The near-infrared emission from the black hole at the Galactic center (Sgr
A*) has unique properties. The most striking feature is a suggestive periodic
sub-structure that has been observed in a couple of flares so far. Using
near-infrared polarimetric observations and modelling the quasi-periodicity in
terms of an orbiting blob, we try to constrain the three dimensional
orientation of the Sgr A* system. We report on so far unpublished polarimetric
data from 2003. They support the observations of a roughly constant mean
polarization angle of 60 degr \pm 20 degr from 2004-2006. Prior investigations
of the 2006 data are deepened. In particular, the blob model fits are evaluated
such that constraints on the position angle of Sgr A* can be derived.
Confidence contours in the position-inclination angle plane are derived. On a
3sigma level the position angle of the equatorial plane normal is in the range
60 degr - 108 degr (east of north) in combination with a large inclination
angle. This agrees well with recent independent work in which radio
spectral/morphological properties of Sgr A* and X-ray observations,
respectively, have been used. However, the quality of the presently available
data and the uncertainties in our model bring some ambiguity to our
conclusions.Comment: 10 pages, 4 figures; Research Note accepted by A&A for publicatio
A Quantitative and Standardized Robotic Method for the Evaluation of Arm Proprioception After Stroke
Stroke often results in both motor and sensory deficits, which may interact in the manifested functional impairment. Proprioception is known to play important roles in the planning and control of limb posture and movement; however, the impact of proprioceptive deficits on motor function has been difficult to elucidate due in part to the qualitative nature of available clinical tests. We present a quantitative and standardized method for evaluating proprioception in tasks directly relevant to those used to assess motor function. Using a robotic manipulandum that exerted controlled displacements of the hand, stroke participants were evaluated, and compared with a control group, in their ability to detect such displacements in a 2-alternative, forced-choice paradigm. A psychometric function parameterized the decision process underlying the detection of the hand displacements. The shape of this function was determined by a signal detection threshold and by the variability of the response about this threshold. Our automatic procedure differentiates between participants with and without proprioceptive deficits and quantifies functional proprioceptive sensation on a magnitude scale that is meaningful for ongoing studies of degraded motor function in comparable horizontal movements
A Robotic Test of Proprioception within the Hemiparetic Arm Post-stroke
Background: Proprioception plays important roles in planning and control of limb posture and movement. The impact of proprioceptive deficits on motor function post-stroke has been difficult to elucidate due to limitations in current tests of arm proprioception. Common clinical tests only provide ordinal assessment of proprioceptive integrity (eg. intact, impaired or absent). We introduce a standardized, quantitative method for evaluating proprioception within the arm on a continuous, ratio scale. We demonstrate the approach, which is based on signal detection theory of sensory psychophysics, in two tasks used to characterize motor function after stroke.
Methods: Hemiparetic stroke survivors and neurologically intact participants attempted to detect displacement- or force-perturbations robotically applied to their arm in a two-interval, two-alternative forced-choice test. A logistic psychometric function parameterized detection of limb perturbations. The shape of this function is determined by two parameters: one corresponds to a signal detection threshold and the other to variability of responses about that threshold. These two parameters define a space in which proprioceptive sensation post-stroke can be compared to that of neurologically-intact people. We used an auditory tone discrimination task to control for potential comprehension, attention and memory deficits.
Results: All but one stroke survivor demonstrated competence in performing two-alternative discrimination in the auditory training test. For the remaining stroke survivors, those with clinically identified proprioceptive deficits in the hemiparetic arm or hand had higher detection thresholds and exhibited greater response variability than individuals without proprioceptive deficits. We then identified a normative parameter space determined by the threshold and response variability data collected from neurologically intact participants. By plotting displacement detection performance within this normative space, stroke survivors with and without intact proprioception could be discriminated on a continuous scale that was sensitive to small performance variations, e.g. practice effects across days.
Conclusions: The proposed method uses robotic perturbations similar to those used in ongoing studies of motor function post-stroke. The approach is sensitive to small changes in the proprioceptive detection of hand motions. We expect this new robotic assessment will empower future studies to characterize how proprioceptive deficits compromise limb posture and movement control in stroke survivors
A Two-Dimensional Near-Infrared Speckle Imaging Survey of T Tauri Stars in Taurus and Ophiuchus
We present the results of a magnitude limited (K≤8.5 mag) multiplicity survey of T Tauri stars in the two nearest star forming regions, Taurus-Auriga and Ophiuchus-Scorpius (D = 150 pc), observable from the northern hemisphere. Each of the 70 stars in the sample was imaged at 2.2 μm using two-dimensional speckle interferometry resulting in a survey sensitive to binary stars with separations ranging from 0.″09 to about 2″.5.
The frequency of double stars with separation in this range is 46±8%. A division between the classical T Tauri stars and the weak-lined T Tauri stars shows no distinction. Furthermore, no difference is observed between the binary frequencies in the two star forming regions although the clouds have very different properties.
Given the limited angular separation range that this survey is sensitive to, both the spectroscopic and wide binaries will be missed. The rate at which binaries are detected suggests that most, if not all, T Tauri stars have companions
- …
