1,106 research outputs found
Does quantum nonlocality irremediably conflict with Special Relativity?
We reconsider the problem of the compatibility of quantum nonlocality and the
requests for a relativistically invariant theoretical scheme. We begin by
discussing a recent important paper by T. Norsen [arXiv:0808.2178] on this
problem and we enlarge our considerations to give a general picture of the
conceptually relevant issue to which this paper is devoted.Comment: 18 pages, 1 figur
Dynamical Reduction Models with General Gaussian Noises
We consider the effect of replacing in stochastic differential equations
leading to the dynamical collapse of the statevector, white noise stochastic
processes with non white ones. We prove that such a modification can be
consistently performed without altering the most interesting features of the
previous models. One of the reasons to discuss this matter derives from the
desire of being allowed to deal with physical stochastic fields, such as the
gravitational one, which cannot give rise to white noises. From our point of
view the most relevant motivation for the approach we propose here derives from
the fact that in relativistic models the occurrence of white noises is the main
responsible for the appearance of untractable divergences. Therefore, one can
hope that resorting to non white noises one can overcome such a difficulty. We
investigate stochastic equations with non white noises, we discuss their
reduction properties and their physical implications. Our analysis has a
precise interest not only for the above mentioned subject but also for the
general study of dissipative systems and decoherence.Comment: 22 pages, Late
Relativistic state reduction dynamics
A mechanism describing state reduction dynamics in relativistic quantum field
theory is outlined. The mechanism involves nonlinear stochastic modifications
to the standard description of unitary state evolution and the introduction of
a relativistic field in which a quantized degree of freedom is associated to
each point in spacetime. The purpose of this field is to mediate in the
interaction between classical stochastic influences and conventional quantum
fields. The equations of motion are Lorentz covariant, frame independent, and
do not result in divergent behavior. It is shown that the mathematical
framework permits the specification of unambiguous local properties providing a
connection between the model and evidence of real world phenomena. The collapse
process is demonstrated for an idealized example.Comment: 20 pages, 2 figures, replacement with minor correction
Selective cloning of Gaussian states by linear optics
We investigate the performances of a selective cloning machine based on
linear optical elements and Gaussian measurements, which allows to clone at
will one of the two incoming input states. This machine is a complete
generalization of a 1 to 2 cloning scheme demonstrated by U. L. Andersen et al.
[Phys. Rev. Lett. vol. 94, 240503 (2005)]. The input-output fidelity is studied
for generic Gaussian input state and the effect of non-unit quantum efficiency
is also taken into account. We show that if the states to be cloned are
squeezed states with known squeezing parameter, then the fidelity can be
enhanced using a third suitable squeezed state during the final stage of the
cloning process. A binary communication protocol based on the selective cloning
machne is also discussed.Comment: 6 pages, 6 figure
Identical particles and entanglement
We review two general criteria for deciding whether a pure bipartite quantum
state describing a system of two identical particles is entangled or not. The
first one considers the possibility of attributing a complete set of objective
properties to each particle belonging to the composed system, while the second
is based both on the consideration of the Slater-Schmidt number of the
fermionic and bosonic analog of the Schmidt decomposition and on the evaluation
of the von Neumann entropy of the one-particle reduced statistical operators.Comment: 8 pages; Latex; Talk delivered at the International Conference on
Quantum Optics 2004, Minsk, Belaru
Quantum and Superquantum Nonlocal Correlations
We present a simple hidden variable model for the singlet state of a pair of
qubits, characterized by two kinds, hierarchically ordered, of hidden
variables. We prove that, averaging over both types of variables, one
reproduces all the quantum mechanical correlations of the singlet state. On the
other hand, averaging only over the hidden variables of the lower level, one
obtains a general formal theoretical scheme exhibiting correlations stronger
than the quantum ones, but with faster-than-light communication forbidden. This
result is interesting by itself since it shows that a violation of the quantum
bound for nonlocal correlations can be implemented in a precise physical manner
and not only mathematically, and it suggests that resorting to two levels of
nonlocal hidden variables might led to a deeper understanding of the physical
principles at the basis of quantum nonlocality.Comment: 5 pages, 1 figure. Submitted for publicatio
The Conway-Kochen argument and relativistic GRW models
In a recent paper, Conway and Kochen proposed what is now known as the "Free
Will theorem" which, among other things, should prove the impossibility of
combining GRW models with special relativity, i.e., of formulating
relativistically invariant models of spontaneous wavefunction collapse. Since
their argument basically amounts to a non-locality proof for any theory aiming
at reproducing quantum correlations, and since it was clear since very a long
time that any relativistic collapse model must be non-local in some way, we
discuss why the theorem of Conway and Kochen does not affect the program of
formulating relativistic GRW models.Comment: 16 pages, RevTe
A test of Local Realism with entangled kaon pairs and without inequalities
We propose the use of entangled pairs of neutral kaons, considered as a
promising tool to close the well known loopholes affecting generic Bell's
inequality tests, in a specific Hardy-type experiment. Hardy's contradiction
without inequalities between Local Realism and Quantum Mechanics can be
translated into a feasible experiment by requiring ideal detection efficiencies
for only one of the observables to be alternatively measured. Neutral kaons are
near to fulfil this requirement and therefore to close the efficiency loophole.Comment: 4 RevTeX page
A critical analysis of Popper's experiment
An experiment which could decide against the Copenhagen interpretation of
quantum mechanics has been proposed by K. Popper and, subsequently, it has been
criticized by M.J. Collett and R. Loudon. Here we show that both the above
mentioned arguments are not correct because they are based on a misuse of basic
quantum rules.Comment: 12 pages, 3 figures, RevTex; to be published on PR
- …
