104 research outputs found

    Regulation of Lysosomal Degradation by CA2+And CA2+-Binding Proteins

    Full text link
    La macroautofagia y la endocitosis son dos procesos catabólicos conservados evolutivamente en los que, mediante un tráfico vesicular, se degrada el material secuestrado, cuyo origen es intra- y extracelular, respectivamente. Ambos procesos comienzan de manera diferente: mediante la formación de un nuevo orgánulo, el autofagosoma, que secuestra material citoplásmico (macroautofagia), o mediante la internalización de material extracelular y de algunos componentes de la membrana plasmática a través de vesículas endocíticas (endocitosis). Sin embargo, los dos terminan en el mismo compartimiento: el lisosoma. En un análisis proteómico de membranas lisosomales, purificadas a partir de fibroblastos de ratón, identificamos tres proteínas, que se unen a fosfolípidos de una manera dependiente de calcio, y cuyos niveles en la membrana lisosomal aumentaban en ausencia de aminoácidos, una condición que activa la macroautofagia. Basándonos en esos resultados iniciales, y teniendo en cuenta que el calcio es un segundo mensajero muy importante, decidimos: en primer lugar, abordar el papel del calcio en la activación de la autofagia producida por el ayuno de aminoácidos, y, en segundo lugar, investigar el papel de esas tres proteínas en el mecanismo autofágico. Como resultado de estos estudios, describimos en primer lugar una nueva vía de señalización dependiente de calcio que activa la formación de autofagosomas por los aminoácidos. Concretamente, hemos encontrado que el ayuno de aminoácidos esenciales produce un aumento en el calcio citosólico, procedente tanto del medio extracelular como de almacenes intracelulares. Como consecuencia de esto, la calmodulina quinasa quinasa- ß activa a AMPK y a mTORC1. En la última etapa de esta vía, ULK1, una quinasa responsable de la iniciación de la autofagia, se activa para contribuir a la formación de los autofagosomas. Las tres proteínas identificadas en el estudio proteómico y cuyos niveles en las membranas lisosomales aumentan en ausencia de aminoácidos son la anexina A1, la anexina A5 y la copina 1. Empleando métodos bioquímicos y de inmunofluorescencia observamos que el ayuno de aminoácidos causa la translocación de la anexina A5 desde el complejo de Golgi hasta las membranas lisosomales, donde también se acumulan la anexina A1 y la copina 1. Asimismo, demostramos por sobre-expresión y silenciamiento de esas tres proteínas, que las tres inducen la fusión de autofagosomas con lisosomas y que la copina 1, y en menor medida la anexina A1, aumentan el efecto individual de la anexina A5. Finalmente, la anexina A5 inhibe la endocitosis mientras que copina 1 la induce. En resumen, nuestros resultados ponen de manifiesto que la activación de la formación de autofagosomas por el ayuno de aminoácidos es debida, al menos en parte, a una vía de señalización dependiente de Ca2+ y que esta condición también conlleva la aceleración de la maduración de los autofagosomas a autolisosomas a través de proteínas que unen el Ca2+ como las anexinas A1 y A5 y la copina 1.Ghislat Cherfaoui, G. (2013). Regulation of Lysosomal Degradation by CA2+And CA2+-Binding Proteins [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/29690TESI

    Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy.

    Get PDF
    Autophagy is an important degradation pathway, which is induced after starvation, where it buffers nutrient deprivation by recycling macromolecules in organisms from yeast to man. While the classical pathway mediating this response is via mTOR inhibition, there are likely to be additional pathways that support the process. Here, we identify Annexin A2 as an autophagy modulator that regulates autophagosome formation by enabling appropriate ATG9A trafficking from endosomes to autophagosomes via actin. This process is dependent on the Annexin A2 effectors ARP2 and Spire1. Annexin A2 expression increases after starvation in cells in an mTOR-independent fashion. This is mediated via Jun N-terminal kinase activation of c-Jun, which, in turn, enhances the trans-activation of the Annexin A2 promoter. Annexin A2 knockdown abrogates starvation-induced autophagy, while its overexpression induces autophagy. Hence, c-Jun-mediated transcriptional responses support starvation-induced autophagy by regulating Annexin A2 expression levels.Openheimer Memorial TrustThis is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms904

    Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit.

    Get PDF
    Background and purpose: Identifying the macromolecular targets of drug molecules is a fundamental aspect of drug discovery and pharmacology. Several drugs remain without known targets (orphan) despite large-scale in silico and in vitro target prediction efforts. Ligand-centric chemical-similarity-based methods for in silico target prediction have been found to be particularly powerful, but the question remains of whether they are able to discover targets for target-orphan drugs. Experimental Approach: We used one of these in silico methods to carry out a target prediction analysis for two orphan drugs: actarit and malotilate. The top target predicted for each drug was carbonic anhydrase II (CAII). Each drug was therefore quantitatively evaluated for CAII inhibition to validate these two prospective predictions. Key Results: Actarit showed in vitro concentration-dependent inhibition of CAII activity with submicromolar potency (IC50 = 422 nM) whilst no consistent inhibition was observed for malotilate. Among the other 25 targets predicted for actarit, RORγ (RAR-related orphan receptor-gamma) is promising in that it is strongly related to actarit's indication, rheumatoid arthritis (RA). Conclusion and Implications: This study is a proof-of-concept of the utility of MolTarPred for the fast and cost-effective identification of targets of orphan drugs. Furthermore, the mechanism of action of actarit as an anti-RA agent can now be re-examined from a CAII-inhibitor perspective, given existing relationships between this target and RA. Moreover, the confirmed CAII-actarit association supports investigating the repositioning of actarit on other CAII-linked indications (e.g., hypertension, epilepsy, migraine, anemia and bone, eye and cardiac disorders)

    A novel puromycin decorporation method to quantify skeletal muscle protein breakdown: a proof-of-concept study

    Get PDF
    The precise roles that the major proteolytic pathways play in the regulation of skeletal muscle mass remain incompletely understood, in part due to technical limitations associated with current techniques used to quantify muscle protein breakdown (MPB). We aimed to develop a method to assess MPB in cells, based on loss of puromycin labelling of translated polypeptide chains. Following an initial 24 h incubation period with puromycin (1 μM), loss of puromycin labelling from murine C2C12 myotubes was assessed over 48 h, both in the presence or absence of protein synthesis inhibitor cycloheximide (CHX). To validate the method, loss of puromycin labelling was determined from cells treated with selected compounds known to influence MPB (e.g. serum starvation, Dexamethasone (Dex), tumour necrosis factor alpha (TNF-α) and MG-132)). Reported established (static) markers of MPB were measured following each treatment. Loss of puromycin labelling from cells pre-incubated with puromycin was evident over a 48 h period, both with and without CHX. Treatment with Dex (−14 ± 2% vs. Ctl; P < 0.01), TNF-α (−20 ± 4% vs. Ctl; P < 0.001) and serum starvation (−14 ± 4% vs. Ctl; P < 0.01) caused a greater loss of puromycin labelling than untreated controls, while the proteasome inhibitor MG-132 caused a relatively lower loss of puromycin labelling (+15 ± 8% vs. Ctl; P < 0.05). Thus, we have developed a novel decorporation method for measuring global changes in MPB, validated in vitro using an established muscle cell line. It is anticipated this non isotopic-tracer alternative to measuring MPB will facilitate insight into the mechanisms that regulate muscle mass/MPB both in vitro, and perhaps, in vivo

    Transcriptional regulation of mammalian autophagy at a glance.

    Get PDF
    Macroautophagy, hereafter referred to as autophagy, is a catabolic process that results in the lysosomal degradation of cytoplasmic contents ranging from abnormal proteins to damaged cell organelles. It is activated  under diverse conditions, including nutrient deprivation and hypoxia. During autophagy, members of the core autophagy-related (ATG) family of proteins mediate membrane rearrangements, which lead to the engulfment and degradation of cytoplasmic cargo. Recently, the nuclear regulation of autophagy, especially by transcription factors and histone modifiers, has gained increased attention. These factors are not only involved in rapid responses to autophagic stimuli, but also regulate the long-term outcome of autophagy. Now there are more than 20 transcription factors that have been shown to be linked to the autophagic process. However, their interplay and timing appear enigmatic as several have been individually shown to act as major regulators of autophagy. This Cell Science at a Glance article and the accompanying poster highlights the main cellular regulators of transcription involved in mammalian autophagy and their target genes

    XIAP and cIAP1 amplifications induce Beclin 1-dependent autophagy through NFκB activation.

    Get PDF
    Perturbations in autophagy and apoptosis are associated with cancer development. XIAP and cIAP1 are two members of the inhibitors of apoptosis protein family whose expression is elevated in different cancers. Here we report that XIAP and cIAP1 induce autophagy by upregulating the transcription of Beclin 1, an essential autophagy gene. The E3 ubiquitin ligase activity of both proteins activates NFκB signalling, leading to the direct binding of p65 to the promoter of Beclin 1 and to its transcriptional activation. This mechanism may be relevant in cancer cells, since we found increased levels of autophagy in different B-cell lymphoma-derived cell lines where XIAP is overexpressed and pharmacological inhibition of XIAP in these cell lines reduced autophagosome biogenesis. Thus, the chemotherapy resistance associated with XIAP and cIAP1 overexpression observed in several human cancers may be, at least in part, due to the Beclin 1-dependent autophagy activation by IAPs described in this study. In this context, the disruption of this increased autophagy might represent a valuable pharmacological tool to be included in combined anti-neoplastic therapies

    An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic 2 reprogramming and mammary tumourigenesis

    Get PDF
    Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis
    corecore