604 research outputs found
Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro
The modulation of cellular endothelial permeability is a desirable goal for targeted delivery of labels and therapeutic macromolecules; the underlying mechanisms, however, remains poorly understood. Here, we hypothesize that a higher endothelial permeability may result as an outcome of selective enhancement of caveolar endocytosis by ultrasound (US), in the frequency and intensity range of current clinical diagnostic use. To assess the role of free radicals in this phenomenon, we exposed confluent human endothelial cells to pulsed diagnostic US for 30 min, with a mechanical index (MI) of 0.5 and 1.2, using a 1.6-MHz cardiac US scan, and endothelial cells not exposed to US were used as control. Here we show that pulsed diagnostic US with a MI of 1.2 (high mechanical index ultrasound [HMIUS]) were able to selectively enhance endothelial caveolar internalization of recombinant glutathione-S-transferase (GST)-Tat11-EGFP fusion protein (26 1 vs. 11.6 1 A.U, p < 0.001 vs. control), without disruption of plasma membrane integrity. Moreover, pulsed diagnostic US with a MI of 0.5 (low mechanical index ultrasound) did not increase caveolar endocytosis compared with control (11.4 1.2 vs. 11.6 1). Free-radical generation inhibitors, such as catalase and superoxide dismutase, reduced the HMIUS-induced caveolar internalization by a 49.29% factor; finally, HMIUS-induced caveolar endocytosis was found to be associated with a significant increase in the phosphorylation of tyr-14-caveolin1, ser1177-eNOS and Thr202/ Tyr204-ERK? compared with control. These findings show how HMIUS irradiation of human endothelial cells cause a selective enhancement of caveolar-dependent permeability, partially mediated by free radicals generation, inducing a marked increase of phosphorylation of caveolar-related proteins. Thus, the use of diagnostic US could potentially be used as an adjuvant to drive caveolar traffic of extracellular peptides by using a higher level of US energy
The coherent dynamics of photoexcited green fluorescent proteins
The coherent dynamics of vibronic wave packets in the green fluorescent
protein is reported. At room temperature the non-stationary dynamics following
impulsive photoexcitation displays an oscillating optical transmissivity
pattern with components at 67 fs (497 cm-1) and 59 fs (593 cm-1). Our results
are complemented by ab initio calculations of the vibrational spectrum of the
chromophore. This analysis shows the interplay between the dynamics of the
aminoacidic structure and the electronic excitation in the primary optical
events of green fluorescent proteins.Comment: accepted for publication in Physical Review Letter
A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) 9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart
The transcriptional transactivator Tat selectively regulates viral splicing
HIV-1 gene expression requires both viral and cellular factors to control and coordinate transcription. While the viral factor Tat is known for its transcriptional transactivator properties, we present evidence for an unexpected function of Tat in viral splicing regulation. We used a series of HIV-1 reporter minigenes to demonstrate that Tat’s role in splicing is dependent on the cellular co-transcriptional splicing activators Tat-SF1 and CA150. Surprisingly, we show that this Tat-mediated splicing function is independent from transcriptional activation. In the context of the full-length viral genome, this mechanism promotes an autoregulatory feedback that decreases expression of tat and favors expression of the env-specific mRNA. Our data demonstrate that Tat-mediated regulation of transcription and splicing can be uncoupled and suggest a mechanism for the involvement of specific transcriptional activators in splicing
PLoS One
P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. Pbodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function
Living myocardial slices for the study of nucleic acid-based therapies
Gene therapy based on viral vectors offers great potential for the study and the treatment of cardiac diseases. Here we explore the use of Living Myocardial Slices (LMS) as a platform for nucleic acid-based therapies. Rat LMS and Adeno-Associated viruses (AAV) were used to optimise and analyse gene transfer efficiency, viability, tissue functionality, and cell tropism in cardiac tissue. Human cardiac tissue from failing (dilated cardiomyopathy) hearts was also used to validate the model in a more translational setting. LMS were cultured at physiological sarcomere length for 72-h under electrical stimulation. Two recombinant AAV serotypes (AAV6 and AAV9) at different multiplicity of infection (MOI) expressing enhanced green fluorescent protein (eGFP) were added to the surface of rat LMS. AAV6 at 20,000 MOI proved to be the most suitable serotype without affecting LMS contractility or kinetics and showing high transduction and penetrability efficiency in rat LMS. This serotype exhibited 40% of transduction efficiency in cardiomyocytes and stromal cells while 20% of the endothelial cells were transduced. With great translational relevance, this protocol introduces the use of LMS as a model for nucleic acid-based therapies, allowing the acceleration of preclinical studies for cardiac diseases
Spatial juxtaposition of HIV-1 provirus with PML and KAKA bodies as revealed by 3D Immuno DNA FISH
A new dual-promoter system for cardiomyocyte-specific conditional induction of apoptosis
Apoptosis is a key determinant of major pathological processes, including chronic cardiac failure. We developed and tested in vitro a novel system to induce cardiomyocyte-specific apoptosis by virus-mediated delivery of a conditional transgene. The entire system was packaged in a lentiviral vector. We used the cardiomyocyte-specific Na+-Ca2+ exchange promoter to control the transcription of the reverse tetracycline transactivator, while the transgene expression was driven by the tetracycline-responsive element. The proapoptotic transgene of choice was the short isoform of the apoptosis-inducing factor, known to quickly induce the caspase-independent apoptosis when overexpressed in cells. Transduction of cardiomyocyte cells with this vector caused a tetracycline-regulated induction of apoptosis, which was not observed in noncardiac cells. Therefore, our system proved a valuable molecular tool for inducing controlled apoptosis in selected cells. Furthermore, the vector we developed is suitable for "lentivirus transgenesis," an interesting strategy recently proposed for the genetic manipulation of animals other than mice, including large mammals.</p
Vascular endothelial growth factor-B gene transfer exacerbates retinal and choroidal neovascularization and vasopermeability without promoting inflammation
The role of vascular endothelial growth factor (VEGF)-B in the eye is poorly understood. The present study was conducted to evaluate the effect of overexpression of VEGF-B via adeno-associated virus (AAV) gene transfer on ocular angiogenesis, inflammation, and the blood-retinal barrier (BRB).Three recombinant AAV vectors were prepared, expressing the 167 (AAV-VEGF-B167) or 186 amino acid isoform (AAV-VEGF-B186) of VEGF-B or the green fluorescent protein (GFP) reporter gene (AAV-GFP). Approximately 1 x 10\u2079 viral genome copies of AAV-VEGF-B167, AAV-VEGF-B186, or AAV-GFP were intraocularly injected. The efficacy of the gene transfer was assessed by directly observing GFP, by immunohistochemistry, or by real-time PCR. A leukostasis assay using fluorescein isothiocyanate-conjugated Concanavalin A was used to evaluate inflammation. The BRB was assessed using a quantitative assay with \ub3H-mannitol as a tracer. Retinal neovascularization (NV) was assessed at postnatal day 17 in oxygen-induced ischemic retinopathy after intravitreal injection of AAV-VEGF-B in left eyes and AAV-GFP in right eyes at postnatal day 7. Two weeks after injection of AAV vectors, choroidal NV was generated by laser photocoagulation and assessed 2 weeks later.GFP expression was clearly demonstrated, primarily in the retinal pigment epithelium (RPE) and outer retina, 1-6 weeks after delivery. mRNA expression levels of VEGF-B167 and VEGF-B186 were 5.8 and 12 fold higher in the AAV-VEGF-B167- and AAV-VEGF-B186-treated groups, respectively. There was no evidence of an inflammatory response or vessel abnormality following injection of the vectors in normal mice; however, VEGF-B increased retinal and choroidal neovascularization. AAV-VEGF-B186, but not AAV-VEGF-B167, enhanced retinal vascular permeability.VEGF-B overexpression promoted pathological retinal and choroidal NV and BRB breakdown without causing inflammation, which is associated with the progression of diabetic retinopathy and age-related macular degeneration, showing that these complications are not dependent on inflammation. VEGF-B targeting could benefit antiangiogenic therapy
- …
